The asymptotic spectrum of LOCC transformations
 arXiv:1807.05130

Péter Vrana
joint work with Asger Kjærulff Jensen
Budapest University of Technology and Economics \& QMATH, University of Copenhagen

September 28, 2018
Entanglement days, Budapest

PROJECT
FINANCED FROM
THE NRDI FUND
MOMENTUM OF INNOVATION

Notations

States

- number of parties $k \in \mathbb{N}$ (fixed)
- states $\mathcal{S}(\mathcal{H})=\{\rho: \mathcal{H} \rightarrow \mathcal{H} \mid \rho \geq 0, \operatorname{Tr} \rho=1\}$
- composite Hilbert space $\mathcal{H}=\mathcal{H}_{1} \otimes \cdots \otimes \mathcal{H}_{k}$
- pure state (rank one projection) $|\varphi\rangle\langle\varphi|$ if φ unit vector

Channels

- channel $T(\rho)=\sum_{i} K_{i} \rho K_{i}^{*}$ where $\sum_{i} K_{i}^{*} K_{i} \leq I$
- trace-nonincreasing: "fails" with probability $\operatorname{Tr} \rho-\operatorname{Tr} T(\rho)$

Local operations and classical communication

LOCC

- any local transformation $T_{1} \otimes \cdots \otimes T_{k}$ is free
- can depend on previous measurement results (classical communication is free)
- joint transformations not allowed ("distant labs")
- allows comparison of resources: ρ more valuable than σ if $\sigma=\Lambda(\rho)$ for some $\Lambda \in \operatorname{LOCC}$ (notation: $\rho \xrightarrow{\text { LOCC }} \sigma$)

Combining resources

Tensor product of states

if $\rho \in \mathcal{S}\left(\mathcal{H}_{1} \otimes \cdots \otimes \mathcal{H}_{k}\right)$ and $\sigma \in \mathcal{S}\left(\mathcal{K}_{1} \otimes \cdots \otimes \mathcal{K}_{k}\right)$ then

$$
\rho \otimes \sigma \in \mathcal{S}\left(\left(\mathcal{H}_{1} \otimes \mathcal{K}_{1}\right) \otimes \cdots \otimes\left(\mathcal{H}_{k} \otimes \mathcal{K}_{k}\right)\right)
$$

- binary operation on states
- commutative up to local unitaries

Interpretation, properties

- "addition" of resources
- combined state allows joint processing
- can be strictly more powerful than individual states

Asymptotic transformations

Transformations on many copies

- For which n and m is $\rho^{\otimes n} \xrightarrow{\text { LOCC }} \sigma^{\otimes m}$ true?
- optimal asymptotic rate:

$$
\lim _{\epsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \max \left\{m \in \mathbb{N} \mid \rho^{\otimes n} \xrightarrow{\text { LOCC }}(1-\epsilon) \sigma^{\otimes m}\right\}
$$

Remark

A different (and more common) type of conversion rate:
$\lim _{\epsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \max \left\{m \in \mathbb{N} \mid \exists \sigma^{\prime}: \rho^{\otimes n} \xrightarrow{\text { LOCC }} \sigma^{\prime},\left\|\sigma^{\prime}-\sigma^{\otimes m}\right\|_{1} \leq \epsilon\right\}$

Error exponents

Error above the optimal rate

- R strong converse rate if error goes to 1 for any larger rate
- typically does so exponentially

Strong converse exponent

- (R, r) achievable if

$$
\rho^{\otimes n} \xrightarrow{\text { LOCC }} 2^{-r n} \sigma^{\otimes\lceil R n\rceil}
$$

for every large enough n

- $E^{*}(r, \rho, \sigma)=\sup \{R \mid(R, r)$ achievable $\}$
- r strong converse exponent

Example: pure bipartite entanglement concentration

Theorem (Hayashi, Koashi, Matsumoto, Morikoshi, Winter ${ }^{1}$)

Let $\rho=\left|\phi_{P}\right\rangle\left\langle\phi_{P}\right|$ with $\left|\phi_{P}\right\rangle=\sum_{x \in \mathcal{X}} \sqrt{P(x)}|x\rangle \otimes|x\rangle$ and σ be Bell state. Then

$$
E^{*}(r, \rho, \sigma)=\inf _{\alpha \in[0,1)} \frac{r \alpha+\log \sum_{x \in \mathcal{X}} P(x)^{\alpha}}{1-\alpha}
$$

Proof techniques

- proof relies on Nielsen's characterization of possible 1-shot transformations (combined with a probabilistic step)
- uses method of types
${ }^{1}$ J. Phys. A: Math. Gen. 36527 (2003)

The direct sum

Direct sum

if $|\psi\rangle \in \mathcal{H}_{1} \otimes \cdots \otimes \mathcal{H}_{k}$ and $|\phi\rangle \in \mathcal{K}_{1} \otimes \cdots \otimes \mathcal{K}_{k}$ then

$$
|\psi\rangle \oplus|\varphi\rangle \in\left(\mathcal{H}_{1} \oplus \mathcal{K}_{1}\right) \otimes \cdots \otimes\left(\mathcal{H}_{k} \oplus \mathcal{K}_{k}\right)
$$

- binary operation on unnormalized state vectors
- commutative up to local unitaries
- tensor product distributes over direct sum

Our results I

Theorem

For any k and unit vectors $|\psi\rangle,|\phi\rangle$

$$
E^{*}(r,|\psi\rangle\langle\psi|,|\phi\rangle\langle\phi|)=\inf _{f \in \Delta\left(\mathcal{S}_{k}\right)} \frac{r \alpha(f)+\log f(|\psi\rangle)}{\log f(|\phi\rangle)}
$$

where $\Delta\left(\mathcal{S}_{k}\right)$ is the asymptotic spectrum, the space of functions from pure k-partite vectors to $\mathbb{R}_{\geq 0}$ that are

- additive under \oplus
- multiplicative under \otimes
- monotone under $\xrightarrow{\text { LOCC }}$
- give 1 on separable vectors of norm 1
and $\alpha(f)=\log f(\sqrt{2}|0 \ldots 0\rangle)$.

Our results II

Theorem

$f \in \Delta\left(\mathcal{S}_{k}\right)$ iff additive, multiplicative and $\exists \alpha \in[0,1]$ such that $f(\sqrt{p}|0 \ldots 0\rangle)=p^{\alpha}$ and

$$
f(|\phi\rangle) \geq\left(f\left(P_{j}|\phi\rangle\right)^{1 / \alpha}+f\left((I-P)_{j}|\phi\rangle\right)^{1 / \alpha}\right)^{\alpha}
$$

for any projection P and $1 \leq j \leq k$.

Our results III

Theorem

Let $k=2$ and define

$$
f_{\alpha}(|\phi\rangle)=\operatorname{Tr}\left[\left(\operatorname{Tr}_{2}|\phi\rangle\langle\phi|\right)^{\alpha}\right] .
$$

Then $\Delta\left(\mathcal{S}_{2}\right)=\left\{f_{\alpha} \mid \alpha \in[0,1]\right\}$.

Corollary

For $P \in \mathcal{P}(\mathcal{X})$ let $\left|\phi_{P}\right\rangle=\sum_{x \in \mathcal{X}} \sqrt{P(x)}|x\rangle \otimes|x\rangle$. Then

$$
E^{*}\left(r,\left|\phi_{P}\right\rangle\left\langle\phi_{P}\right|,\left|\phi_{Q}\right\rangle\left\langle\phi_{Q}\right|\right)=\inf _{\alpha \in[0,1)} \frac{r \alpha+\log \sum_{x \in \mathcal{X}} P(x)^{\alpha}}{\log \sum_{x \in \mathcal{X}} Q(x)^{\alpha}}
$$

