Challenges in Non-Commutative Information Geometry

Jan Naudts

Universiteit Antwerpen

Budapest, September 2018

Introduction

My goal: Find alternative description of quantum information theory

- Standard: a density matrix ρ describes a statistical mixture of quantum states
- Alternative: use the GNS-representation of mixed quantum states

Why? Find a more general theory

- not relying on the properties of the trace
- using elements of information geometry
- using elements of non-commutative geometry
J. Naudts, Quantum Statistical Manifolds, Entropy 20(6), 472 (2018);

Correction submitted

Contents

(9) Introduction
(2) Standard theory

- The relative modular operator
- The metric

3 The GNS representation

- The chart centered at ρ
- The metric

4 The exponential connection
(5) Summary

Standard theory

See for instance Dénes Petz, Quantum Information Theory and Quantum Statistics (Springer, 2008)

The density matrix ρ is a complex n-by- n matrix satisfying

$$
\rho \geq 0 \text { and } \operatorname{Tr} \rho=1
$$

A special role is played by the density matrix

$$
\rho_{0}=\frac{1}{n} \mathbb{I}=\frac{1}{n}\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\cdots & & & & \\
0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

The space of n-by- n matrices forms a Hilbert space $\mathcal{H}^{\text {Hs }}$ for the Hilbert-Schmidt scalar product

$$
\langle A, B\rangle_{\text {Hs }}=\operatorname{Tr} A^{\dagger} B=n \operatorname{Tr} \rho_{0} A^{\dagger} B=n\left\langle A^{\dagger} B\right\rangle_{\rho_{0}}
$$

The relative modular operator

Fix two strictly positive density matrices ρ and σ
Note that in general ρ and σ do not commute
(Petz 86) introduced the relative modular operator $\Delta_{\rho, \sigma}$ on $\mathcal{H}^{\text {HS }}$ defined by $\quad \Delta_{\rho, \sigma} A=\rho A \sigma^{-1} \quad$ for all A

The relative entropy (Umegaki 1962, Araki 1976), defined by

$$
D(\sigma \| \rho)=\operatorname{Tr} \sigma(\log \sigma-\log \rho)
$$

can be written as $\quad D(\sigma \| \rho)=\left\langle\sigma^{1 / 2} \mid\left[\log \Delta_{\sigma, \rho},\right] \sigma^{1 / 2}\right\rangle_{\text {Hs }}$
Proof Write $\Delta_{\sigma, \rho}=L_{\rho} R_{\sigma^{-1}}$ where $L_{\rho} R_{\sigma^{-1}}=R_{\sigma^{-1}} L_{\rho}$

The metric

From the relative entropy one derives Bogoliubov's scalar product, which can be written as a metric tensor

$$
\begin{aligned}
g_{\sigma, \tau}(\rho)= & \int_{0}^{1} \mathrm{~d} u \operatorname{Tr} \rho^{u}(\log \sigma-\log \rho) \rho^{1-u}(\log \tau-\log \rho) \\
& -D(\rho| | \sigma) D(\rho \| \mid \tau) \\
= & \int_{0}^{1} \mathrm{~d} \boldsymbol{u}\left\langle\rho^{1 / 2}\right|\left[\log \Delta_{\tau, \rho}\right] \rho^{u}\left[\log \Delta_{\sigma, \rho}\right] \rho^{-u}\left|\rho^{1 / 2}\right\rangle_{\mathrm{HS}} \\
& -\left\langle\rho^{1 / 2} \mid\left[\log \Delta_{\tau, \rho}\right] \rho^{1 / 2}\right\rangle_{\mathrm{HS}}\left\langle\left[\log \Delta_{\sigma, \rho}\right] \rho^{1 / 2}\right\rangle_{\mathrm{HS}} .
\end{aligned}
$$

ρ, σ, τ are strictly positive density matrices

The metric cont'd

ρ is a point A in the manifold \mathbb{M} of strictly positive density matrices

With σ, τ correspond two points B, C in the tangent plane $T_{\rho} \mathbb{M}$

$g_{\sigma, \tau}(\rho)$ is the scalar product between the vectors $\overrightarrow{A B}, \overrightarrow{A C}$

The GNS representation (Gelfand, Naimark, Segal)

$n \times n$ matrices represented as $n^{2} \times n^{2}$ block matrices
In this representation the density matrix ρ is replaced by a 'wave function' Ω_{ρ}.

- Diagonalize $\rho: \quad \rho=\sum p_{n}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right| \quad$ with $p_{n}>0, \quad \sum_{n} p_{n}=1$.
- Let $\quad \Omega_{\rho}=\sum_{n} \sqrt{p_{n}} \psi_{n} \otimes \psi_{n}$
- Then

$$
\begin{aligned}
\left\langle\Omega_{\rho}\right| \boldsymbol{A} \otimes \mathbb{I}\left|\Omega_{\rho}\right\rangle & =\sum_{m, n} \sqrt{p_{m} p_{n}}\left\langle\psi_{m} \otimes \psi_{m} \mid\left(\boldsymbol{A} \psi_{n}\right) \otimes \psi_{n}\right\rangle \\
& =\sum_{m, n} \sqrt{p_{m} p_{n}}\left\langle\psi_{m} \mid \boldsymbol{A} \psi_{n}\right\rangle\left\langle\psi_{m} \mid \psi_{n}\right\rangle \\
& =\sum_{n}^{n} p_{n}\left\langle\psi_{n} \mid \boldsymbol{A} \psi_{n}\right\rangle \\
& =\operatorname{Tr} \rho \boldsymbol{A}=\langle\boldsymbol{A}\rangle_{\rho} .
\end{aligned}
$$

The GNS representation Cont'd

In particular, with the tracial density matrix $\rho_{0}=\frac{1}{n} \mathbb{I}$ corresponds

$$
\Omega_{0}=\frac{1}{n} \sum_{i=1}^{n} \psi_{i} \otimes \psi_{i}
$$

where $\psi_{1}, \cdots, \psi_{n}$ is any orthonormal bazis.

Let \mathcal{A} denote the space of all 'operators' of the form $A \otimes \mathbb{I}$
The commutant \mathcal{A}^{\prime} consists of all operators of the form $\mathbb{I} \otimes A$

The chart centered at ρ

The metric tensor $g_{\sigma, \tau}(\rho)$ involves 3 density matrices ρ fixes a point A in the manifold \mathbb{M}, σ, τ fix the points B and C in the tangent plane $T_{\rho} \mathbb{M}$
ρ is described by the 'wave function' Ω_{ρ} How to describe σ and τ ?

Theorem Given ρ, σ there exists a unique $K=K^{\dagger}$ in \mathcal{A}^{\prime}
such that $K \Omega_{\rho}=\int_{0}^{1} \mathrm{~d} u \rho^{u}\left[\log \Delta_{\sigma, \rho}\right] \rho^{-u} \Omega_{\rho}+D(\rho \| \sigma) \Omega_{\rho}$ and $\quad\left\langle\Omega_{\rho} \mid K \Omega_{\rho}\right\rangle=0$

The map $\sigma \mapsto K$ is a chart for \mathbb{M}
It is centered at ρ : Indeed, $\sigma=\rho$ implies $K=0$

The metric

Proposition Consider the chart $\chi_{\rho}: \sigma \mapsto K$ centered at ρ. Then

1) There exists a strictly positive operator G_{ρ} in \mathcal{A} such that

$$
G_{\rho} K \Omega_{\rho}=\left[\left(\Delta_{\rho, \sigma}+D(\rho \| \sigma)\right] \Omega_{\rho}\right.
$$

2) For each pair $K=\chi_{\rho}(\sigma)$ and $L=\chi_{\rho}(\tau)$ is

$$
g_{\sigma, \tau}(\rho)=\left(K \Omega_{\rho}, G_{\rho} L \Omega_{\rho}\right)
$$

Note: G_{ρ} is in \mathcal{A} while K and L belong to the commutant \mathcal{A}^{\prime}
Positivity of the metric follows immediately from $G_{\rho}>0$

The exponential connection

The geodesics $t \mapsto \rho_{t}$ are such that

$$
\begin{aligned}
\log \rho_{t} & =(1-t) \log \rho_{0}+t \log \rho_{1}-\zeta(t) \\
& =\log \rho_{0}+t H-\zeta(t)
\end{aligned}
$$

$\zeta(t)$ is a normalizing function, H is defined by $H=\log \rho_{1}-\log \rho_{0}$

Proposition

1) $\frac{\mathrm{d} \zeta}{\mathrm{d} t}=\langle H\rangle_{t}=D\left(\rho_{t} \| \rho_{0}\right)-D\left(\rho_{t} \| \rho_{1}\right)$
2) $t \mapsto \zeta(t)$ is convex
3) $\chi_{\rho}\left(\rho_{t}\right)=(1-t) \chi_{\rho}\left(\rho_{0}\right)+t \chi_{\rho}\left(\rho_{1}\right)$

The latter shows that the chart χ_{ρ} is an affine coordinate

Summary

- It is possible to eliminate references to the trace operation using the GNS representation
- Label σ relative to ρ with an operator $K=K^{\dagger}$ in \mathcal{A}^{\prime} This gives a chart $K=\chi_{\rho}(\sigma)$ of \mathbb{M}, centered at ρ
- Scalar product of Bogoliubov $\Rightarrow G_{\rho}>0$ in \mathcal{A}
- $K=\chi_{\rho}(\sigma)$ is an affine coordinate for the exponential connection

Challenges How much of this can be generalized?

