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Problem

I System of L qubits, H = C2 ⊗ . . .⊗ C2.

I P(H), φ ∈ H, [φ] ∈ P(H).

I One qubit base: {|0〉, |1〉}.

I Problem: Classification of pure states by their entanglement
type

I What can we say about entanglement type by looking at
1-particle reduced density matrices?



Setting

I SLOCC operations – G = SL(2,C)×L

[g.φ] = [g1 ⊗ · · · ⊗ gLφ], gk ∈ SL(2,C), φ ∈ H.

I Two states [φ1] and [φ2] are equally entangled iff

[g.φ1] = [φ2], g ∈ G

I Let Cφ := G.φ = {g.φ : g ∈ G}



Two qubits

G = SL(2,C)× SL(2,C)

Schmidt decomposition:

|Ψ〉 = p1|00〉+ p2|11〉, |p1|2 + |p2|2 = 1

There are two entanglement classes (two G-orbits)

1. p1 6= 0 and p2 6= 0 – entangled states

2. p1 = 0 and p2 6= 0 or vice versa – separable states

ρ1(Ψ) =

(
|p1|2 0

0 |p2|2
)
, ρ2(Ψ) =

(
|p1|2 0

0 |p2|2
)

Conclusion: One can distinguish between entanglement classes by
measuring spectra of 1-qubit RDMs



Three qubits

I G = SL(2,C)× SL(2,C)× SL(2,C)

I There is no Schmidt decomposition

I There are six entanglement classes (G-orbits in P(H)):

1. Separable states

2. 3 orbits of BiSeparable states

3. [G.φW ], where φW = |001〉+ |010〉+ |100〉

4. [G.φGHZ ], where φGHZ=|000〉+|111〉

I Can we distinguish between these classes by measuring
spectra of 1-qubit RDMs?

I How about more qubits?



Problems of the classification

I Number of classes Cφ = [G.φ] is infinite starting from the
system of four qubits.

I Number of parameters required to distinguish between classes
Cφ grows exponentially with the number of qubits.

I These parameters, e.g. invariant polynomials typically lack
physical meaning and are not measureable.

I We want to introduce a classification, which is much more
robust by organising classes C into a finite number of families
using spectra of 1-qubit RDMs.



1-qubit RDMs

I ρi([φ]) - the i-th one-qubit Reduced Density Matrix (RDM)

µ([φ]) =

(
ρ1([φ])− 1

2
I, . . . , ρL([φ])− 1

2
I

)

I The ordered spectrum of ρi([φ])− 1
2I is given by

σ

(
ρi([φ])− 1

2
I

)
= (−λi, λi) , λi ∈ [0,

1

2
].

I The collection of spectra for [φ] ∈ P(H):

Ψ : PH →
[
0,

1

2

]×L
, Ψ([φ]) = {λ1, λ2, . . . , λL}.



First Convexity Theorem

I ∆H := Ψ(PH) is a convex polytope.

I Follows from the momentum map convexity theorem (Kirwan
’84)

I Higuchi, Sudbery, Szulc ’03 - This polytope is given by the
intersection of

∀i
(

1

2
− λi

)
≤
∑
j 6=i

(
1

2
− λj

)
,

with the cube
[
0, 12
]×L

.



Polytopes for 2 and 3 qubits



Second Convexity Theorem

I Cφ = [G.φ]

I ∆Cφ = Ψ(Cφ) is a convex polytope.

I Follows from the convexity theorem of Brion ’87

I ∆Cφ is called an Entanglement Polytope (EP)

I Introduced to QI in ’12 (AS, Oszmaniec, Kuś) and (Walter,
Doran, Gross, Christandl)

I Although for L ≥ 4 the number of classes C is infinite, the
number of polytopes ∆C is always finite!

I Brion’s theorem: Finding EPs requires knowing the generating
set of covariants.

I This was solved only up to 4 qubits (Briand, Luque, J.-Y.
Thibon 2003).



Entanglement Polytopes for three qubits



Properties of Entanglement Polytopes

I Entanglement polytopes are typically not disjoint,
∆C ∩∆C′ 6= ∅.

I Example: ∆CGHZ = ∆H thus ∆Cφ ⊂ ∆CGHZ for every Cφ

I Entanglement polytopes can be regarded as entanglement
witnesses.



Properties of Entanglement Polytopes

EPs as entanglement witnesses:
I For [φ] ∈ P(H) we give a list of polytopes that do not contain

Ψ([φ]).
I The decision-making power of EPs is determined by the

volume of the region in ∆H where many EPs overlap.
I Problem: Finding entanglement polytopes, even for five

qubits, is in fact intractable!



Resolving overlaps
I For a polytope ∆C let λC be the point that is closest to the

origin 0.

I Using momentum map techniques we can construct a protocol
that transforms a given state φ using G operations to a state
with λ = λCφ .

I This way we can (at least partially) resolve overlaps between
polytopes)



Understand the distribution of
‖λC‖2 in ∆H

for large number of qubits.



Procedure for finding λC for L qubits

I ’15 TM and A. Sawicki - the procedure for finding λC using
momentum map results of Kirwan and Ness

1. Construct L-dimensional hypercube whose vertices have
coordinates ±1

2 .

2. Chose L out of 2L vertices and consider the plane P
containing the chosen points .

3. Find the closest point p to the origin 0 in P .

4. Point p = λC for some ∆C iff p does not lie on an edge of the
hypercube.



3 qubits

|φW 〉 =
1√
3

(|011〉+ |101〉+ |110〉) , |φGHZ〉 =
1√
2

(|000〉+ |111〉)

|φB1〉 =
1√
2

(|1〉 ⊗ (|11〉+ |00〉))



Finding ‖λC‖2

I Linear Entropy (mean purity)

E([φ]) = 1− 1

L

L∑
i=1

trρ2i ([φ])

I [φ] is critical iff

dE([φ]) = 0

I Fact ‖λC‖2 = −LEc + L
2 , where Ec is a critical value of E(·)



Histograms for 20 and 200 qubits, sample of 106 points
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Implications - region with a weak entanglement witnessing
power



Implications - the feasibility of entanglement distillation
protocols

Such a protocol (gradient flow of E) transforms a given state
φ ∈ C using SLOCC operations to a state with critical local spectra
λC .



Implications - required purity of states

For a mixed state ρ with Trρ2 = p there exists a pure state ψ such
that 〈ψ|ρ|ψ〉 ≥ p and ‖Ψ(ρ)−Ψ(φ)‖ ≤ δL(p) = L

2 (1−
√

2p− 1).
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Procedure for finding ‖λC‖2 for L qubits

I For vectors v1, . . . , vk ∈ Rn let

G(v1, . . . , vk) =

(v1|v1) . . . (v1|vk)
...

. . . . . .
(vk|v1) . . . (vk|vk)


I |G(v1, . . . , vk)| := detG(v1, . . . , vk)



Example

V =
1

3
Sd, d2 =

32V 2

S2

V 2 =
1

3!
|G(v1, v2, v3)| S2 =

1

2!
|G(v1 − v3, v2 − v3)|

d2 =
|G(v1, v2, v3)|

|G(v1 − v3, v2 − v3)
,



Formula for ‖λC‖2

‖λC‖2 =
1

4

|G(v1, . . . , vL)|
|G(v1 − vL, . . . , vL−1 − vL)

,

where vi ∈ RL are vectors with ±1 entries – Bernoulli vectors



The model

I Vertices of the L-dimensional cube with Bernoulli vertices are
uniformly distributed on SL−1 with r2 = L.

I Let v = (v1, . . . , vL)t ∈ RL be a Gaussian vector, i.e.
vi ∼ N(0, 1).

v ∼
exp

(
−1

2‖v‖
2
)√

(2π)L

I The distribution of v is isotropic. ‖v‖2 is χ2
L with the mean L

and σ =
√

2L

I When L→∞ the ratio
√
2L
L → 0

I Problem: Calculate distribution of |G(v1,...,vL)|
|G(v1−vL,...,vL−1−vL)| for

vi ∼ N(0, I)



The model



Conclucisons

I The closet points to the origin of the EPs accumulate close to
the origin

I The mean of |λC |2 is 1
4L

I The usefulness of EPs depends on purity and experimental
precision for large L
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