Quantum entanglement from single particle information

Adam Sawicki
\&

M. Kuś, T. Maciążek, M. Oszmaniec

Center of Theoretical Physics PAS, Warsaw, Poland

Problem

- System of L qubits, $\mathcal{H}=\mathbb{C}^{2} \otimes \ldots \otimes \mathbb{C}^{2}$.
- $\mathbb{P}(\mathcal{H}), \phi \in \mathcal{H},[\phi] \in \mathbb{P}(\mathcal{H})$.
- One qubit base: $\{|0\rangle,|1\rangle\}$.
- Problem: Classification of pure states by their entanglement type
- What can we say about entanglement type by looking at 1-particle reduced density matrices?

Setting

- SLOCC operations - $G=S L(2, \mathbb{C})^{\times L}$

$$
[g \cdot \phi]=\left[g_{1} \otimes \cdots \otimes g_{L} \phi\right], g_{k} \in S L(2, \mathbb{C}), \phi \in \mathcal{H}
$$

- Two states $\left[\phi_{1}\right]$ and $\left[\phi_{2}\right]$ are equally entangled iff

$$
\left[g \cdot \phi_{1}\right]=\left[\phi_{2}\right], g \in G
$$

- Let $\mathcal{C}_{\phi}:=G \cdot \phi=\{g \cdot \phi: g \in G\}$

Two qubits

$G=S L(2, \mathbb{C}) \times S L(2, \mathbb{C})$
Schmidt decomposition:

$$
|\Psi\rangle=p_{1}|00\rangle+p_{2}|11\rangle, \quad\left|p_{1}\right|^{2}+\left|p_{2}\right|^{2}=1
$$

There are two entanglement classes (two G-orbits)

1. $p_{1} \neq 0$ and $p_{2} \neq 0$ - entangled states
2. $p_{1}=0$ and $p_{2} \neq 0$ or vice versa - separable states

$$
\rho_{1}(\Psi)=\left(\begin{array}{cc}
\left|p_{1}\right|^{2} & 0 \\
0 & \left|p_{2}\right|^{2}
\end{array}\right), \quad \rho_{2}(\Psi)=\left(\begin{array}{cc}
\left|p_{1}\right|^{2} & 0 \\
0 & \left|p_{2}\right|^{2}
\end{array}\right)
$$

Conclusion: One can distinguish between entanglement classes by measuring spectra of 1-qubit RDMs

Three qubits

- $G=S L(2, \mathbb{C}) \times S L(2, \mathbb{C}) \times S L(2, \mathbb{C})$
- There is no Schmidt decomposition
- There are six entanglement classes (G-orbits in $\mathbb{P}(\mathcal{H})$):

1. Separable states
2. 3 orbits of BiSeparable states
3. $\left[G \cdot \phi_{W}\right]$, where $\phi_{W}=|001\rangle+|010\rangle+|100\rangle$
4. $\left[G \cdot \phi_{G H Z}\right]$, where $\phi_{G H Z}=|000\rangle+|111\rangle$

- Can we distinguish between these classes by measuring spectra of 1-qubit RDMs?
- How about more qubits?

Problems of the classification

- Number of classes $\mathcal{C}_{\phi}=[G . \phi]$ is infinite starting from the system of four qubits.
- Number of parameters required to distinguish between classes C_{ϕ} grows exponentially with the number of qubits.
- These parameters, e.g. invariant polynomials typically lack physical meaning and are not measureable.
- We want to introduce a classification, which is much more robust by organising classes \mathcal{C} into a finite number of families using spectra of 1 -qubit RDMs.

1-qubit RDMs

- $\rho_{i}([\phi])$ - the i-th one-qubit Reduced Density Matrix (RDM)

$$
\mu([\phi])=\left(\rho_{1}([\phi])-\frac{1}{2} I, \ldots, \rho_{L}([\phi])-\frac{1}{2} I\right)
$$

- The ordered spectrum of $\rho_{i}([\phi])-\frac{1}{2} I$ is given by

$$
\sigma\left(\rho_{i}([\phi])-\frac{1}{2} I\right)=\left(-\lambda_{i}, \lambda_{i}\right), \lambda_{i} \in\left[0, \frac{1}{2}\right] .
$$

- The collection of spectra for $[\phi] \in \mathbb{P}(\mathcal{H})$:

$$
\Psi: \mathbb{P H} \rightarrow\left[0, \frac{1}{2}\right]^{\times L}, \Psi([\phi])=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{L}\right\}
$$

First Convexity Theorem

- $\Delta_{\mathcal{H}}:=\Psi(\mathbb{P} \mathcal{H})$ is a convex polytope.
- Follows from the momentum map convexity theorem (Kirwan '84)
- Higuchi, Sudbery, Szulc '03-This polytope is given by the intersection of

$$
\forall_{i}\left(\frac{1}{2}-\lambda_{i}\right) \leq \sum_{j \neq i}\left(\frac{1}{2}-\lambda_{j}\right)
$$

with the cube $\left[0, \frac{1}{2}\right]^{\times L}$.

Polytopes for 2 and 3 qubits

$\mathrm{v}_{G H Z}$

(b)

Second Convexity Theorem

- $\mathcal{C}_{\phi}=[$ G. $\phi]$
- $\Delta_{\mathcal{C}_{\phi}}=\Psi\left(\overline{\mathcal{C}_{\phi}}\right)$ is a convex polytope.
- Follows from the convexity theorem of Brion '87
- $\Delta_{\mathcal{C}_{\phi}}$ is called an Entanglement Polytope (EP)
- Introduced to QI in '12 (AS, Oszmaniec, Kuś) and (Walter, Doran, Gross, Christandl)
- Although for $L \geq 4$ the number of classes \mathcal{C} is infinite, the number of polytopes $\Delta_{\mathcal{C}}$ is always finite!
- Brion's theorem: Finding EPs requires knowing the generating set of covariants.
- This was solved only up to 4 qubits (Briand, Luque, J.-Y. Thibon 2003).

Entanglement Polytopes for three qubits

Properties of Entanglement Polytopes

- Entanglement polytopes are typically not disjoint, $\Delta_{\mathcal{C}} \cap \Delta_{\mathcal{C}^{\prime}} \neq \emptyset$.
- Example: $\Delta_{\mathcal{C}_{G H Z}}=\Delta_{\mathcal{H}}$ thus $\Delta_{\mathcal{C}_{\phi}} \subset \Delta_{\mathcal{C}_{G H Z}}$ for every C_{ϕ}
- Entanglement polytopes can be regarded as entanglement witnesses.

$$
\begin{aligned}
& \left|\phi_{W}\right\rangle=\frac{1}{\sqrt{3}}(|011\rangle+|101\rangle+|110\rangle) \\
& \left|\phi_{G H Z}\right\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)
\end{aligned}
$$

Properties of Entanglement Polytopes

EPs as entanglement witnesses:

- For $[\phi] \in \mathbb{P}(\mathcal{H})$ we give a list of polytopes that do not contain $\Psi([\phi])$.
- The decision-making power of EPs is determined by the volume of the region in $\Delta_{\mathcal{H}}$ where many EPs overlap.
- Problem: Finding entanglement polytopes, even for five qubits, is in fact intractable!

Resolving overlaps

- For a polytope Δ_{C} let $\bar{\lambda}_{C}$ be the point that is closest to the origin $\overline{0}$.
- Using momentum map techniques we can construct a protocol that transforms a given state ϕ using G operations to a state with $\bar{\lambda}=\bar{\lambda}_{\mathcal{C}_{\phi}}$.
- This way we can (at least partially) resolve overlaps between polytopes)

Understand the distribution of

 $\left\|\bar{\lambda}_{\mathcal{C}}\right\|^{2}$ in $\Delta_{\mathcal{H}}$for large number of qubits.

Procedure for finding $\bar{\lambda}_{C}$ for L qubits

- '15 TM and A. Sawicki - the procedure for finding $\bar{\lambda}_{C}$ using momentum map results of Kirwan and Ness

1. Construct L-dimensional hypercube whose vertices have coordinates $\pm \frac{1}{2}$.
2. Chose L out of 2^{L} vertices and consider the plane P containing the chosen points.
3. Find the closest point p to the origin $\overline{0}$ in P.
4. Point $p=\bar{\lambda}_{\mathcal{C}}$ for some $\Delta_{\mathcal{C}}$ iff p does not lie on an edge of the hypercube.

3 qubits

Finding $\left\|\bar{\lambda}_{\mathcal{C}}\right\|^{2}$

- Linear Entropy (mean purity)

$$
E([\phi])=1-\frac{1}{L} \sum_{i=1}^{L} \operatorname{tr} \rho_{i}^{2}([\phi])
$$

- [$\phi]$ is critical iff

$$
d E([\phi])=0
$$

- Fact $\left\|\bar{\lambda}_{\mathcal{C}}\right\|^{2}=-L E_{c}+\frac{L}{2}$, where E_{c} is a critical value of $E(\cdot)$

Histograms for 20 and 200 qubits, sample of 10^{6} points

Implications - region with a weak entanglement witnessing power

Implications - the feasibility of entanglement distillation

 protocolsSuch a protocol (gradient flow of E) transforms a given state $\phi \in \mathcal{C}$ using SLOCC operations to a state with critical local spectra $\bar{\lambda}_{\mathcal{C}}$.

Implications - required purity of states

For a mixed state ρ with $\operatorname{Tr} \rho^{2}=p$ there exists a pure state ψ such that $\langle\psi| \rho|\psi\rangle \geq p$ and $\|\Psi(\rho)-\Psi(\phi)\| \leq \delta_{L}(p)=\frac{L}{2}(1-\sqrt{2 p-1})$.

Implications - required purity of states

For a mixed state ρ with $\operatorname{Tr} \rho^{2}=p$ there exists a pure state ψ such that $\langle\psi| \rho|\psi\rangle \geq p$ and $\|\Psi(\rho)-\Psi(\phi)\| \leq \delta_{L}(p)=\frac{L}{2}(1-\sqrt{2 p-1})$.

Dashed lines $-\delta_{L}(p)$, black line $-\mathbb{E}\left[\left\|\bar{\lambda}_{C}\right\|^{2}\right]=\frac{1}{4 L}$, black dots polytopes closest to zero.

Procedure for finding $\left\|\bar{\lambda}_{\mathcal{C}}\right\|^{2}$ for L qubits

- For vectors $\bar{v}_{1}, \ldots, \bar{v}_{k} \in \mathbb{R}^{n}$ let

$$
G\left(\bar{v}_{1}, \ldots, \bar{v}_{k}\right)=\left(\begin{array}{ccc}
\left(\bar{v}_{1} \mid \bar{v}_{1}\right) & \ldots & \left(\bar{v}_{1} \mid \bar{v}_{k}\right) \\
\vdots & \ddots & \ldots \\
\left(\bar{v}_{k} \mid \bar{v}_{1}\right) & \ldots & \left(\bar{v}_{k} \mid \bar{v}_{k}\right)
\end{array}\right)
$$

- $\left|G\left(\bar{v}_{1}, \ldots, \bar{v}_{k}\right)\right|:=\operatorname{det} G\left(\bar{v}_{1}, \ldots, \bar{v}_{k}\right)$

Example

$$
\begin{gathered}
V=\frac{1}{3} S d, \quad d^{2}=\frac{3^{2} V^{2}}{S^{2}} \\
V^{2}=\frac{1}{3!}\left|G\left(\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}\right)\right| \quad S^{2}=\frac{1}{2!}\left|G\left(\bar{v}_{1}-\bar{v}_{3}, \bar{v}_{2}-\bar{v}_{3}\right)\right| \\
d^{2}=\frac{\left|G\left(\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}\right)\right|}{\mid G\left(\bar{v}_{1}-\bar{v}_{3}, \bar{v}_{2}-\bar{v}_{3}\right)},
\end{gathered}
$$

Formula for $\left\|\bar{\lambda}_{\mathcal{C}}\right\|^{2}$

$$
\left\|\bar{\lambda}_{\mathcal{C}}\right\|^{2}=\frac{1}{4} \frac{\left|G\left(\bar{v}_{1}, \ldots, \bar{v}_{L}\right)\right|}{\mid G\left(\bar{v}_{1}-\bar{v}_{L}, \ldots, \bar{v}_{L-1}-\bar{v}_{L}\right)},
$$

where $\bar{v}_{i} \in \mathbb{R}^{L}$ are vectors with ± 1 entries - Bernoulli vectors

The model

- Vertices of the L-dimensional cube with Bernoulli vertices are uniformly distributed on S^{L-1} with $r^{2}=L$.
- Let $\bar{v}=\left(v_{1}, \ldots, v_{L}\right)^{t} \in \mathbb{R}^{L}$ be a Gaussian vector, i.e. $v_{i} \sim N(0,1)$.

$$
\bar{v} \sim \frac{\exp \left(-\frac{1}{2}\|v\|^{2}\right)}{\sqrt{(2 \pi)^{L}}}
$$

- The distribution of \bar{v} is isotropic. $\|\bar{v}\|^{2}$ is χ_{L}^{2} with the mean L and $\sigma=\sqrt{2 L}$
- When $L \rightarrow \infty$ the ratio $\frac{\sqrt{2 L}}{L} \rightarrow 0$
- Problem: Calculate distribution of $\frac{\left|G\left(\bar{v}_{1}, \ldots, \bar{v}_{L}\right)\right|}{\left|G\left(\bar{v}_{1}-\bar{v}_{L}, \ldots, \bar{v}_{L-1}-\bar{v}_{L}\right)\right|}$ for $\bar{v}_{i} \sim N(\overline{0}, I)$

The model

Conclucisons

- The closet points to the origin of the EPs accumulate close to the origin
- The mean of $\left|\bar{\lambda}_{\mathcal{C}}\right|^{2}$ is $\frac{1}{4 L}$
- The usefulness of EPs depends on purity and experimental precision for large L

References

1. A. Sawicki, M. Oszmaniec, M. Kuś, Phys. Rev. A 86, 040304(R) (2012)
2. A. Sawicki, M. Oszmaniec, M. Kuś, Reviews in Mathematical Physics, 26, 1450004, (2014)
3. T. Maciążek, A. Sawicki, J. Phys. A: Math. Theor. 48045305, (2015)
4. T. Maciążek, A. Sawicki, J. Phys. A: Math. Theor, 51, 7, 07LT01, (2018)
