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Problem

» System of L qubits, H = C* ® ... ® C2.
> P(H), ¢ € 1, [¢] € P(H).
» One qubit base: {|0),|1)}.

» Problem: Classification of pure states by their entanglement
type

» What can we say about entanglement type by looking at
1-particle reduced density matrices?



Setting
» SLOCC operations — G = SL(2,C)*

9.0l =1 @+ ®grd], g € SL(2,C), ¢ € H.

» Two states [¢1] and [¢2] are equally entangled iff

l9.01] = [¢2], g € G

» Let Cy :=G.¢p={g9.0:9€ G}
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Two qubits

G =SL(2,C) x SL(2,C)
Schmidt decomposition:
(W) = p1|00) + pa|11), |p1f* + |pof* =1

There are two entanglement classes (two G-orbits)
1. p1 # 0 and ps # 0 — entangled states

2. p1 = 0 and p2 # 0 or vice versa — separable states

w0 =5 ) == (5 )

Conclusion: One can distinguish between entanglement classes by
measuring spectra of 1-qubit RDMs



Three qubits

v

G = SL(2,C) x SL(2,C) x SL(2,C)
There is no Schmidt decomposition

v

v

There are six entanglement classes (G-orbits in P(H)):

1. Separable states

2. 3 orbits of BiSeparable states

3. [G.ow], where ¢y = |001) + |010) + |100)
4. [G.dcuz|, where ¢gpz=|000)+|111)

v

Can we distinguish between these classes by measuring
spectra of 1-qubit RDMs?

v

How about more qubits?



Problems of the classification

» Number of classes Cy = [G.¢] is infinite starting from the
system of four qubits.

» Number of parameters required to distinguish between classes
Cy grows exponentially with the number of qubits.

> These parameters, e.g. invariant polynomials typically lack
physical meaning and are not measureable.

» We want to introduce a classification, which is much more
robust by organising classes C into a finite number of families
using spectra of 1-qubit RDMs.
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1-qubit RDMs

> pi([¢]) - the i-th one-qubit Reduced Density Matrix (RDM)

(6 = (26 = 5T.wvvpulleD) - 57)

» The ordered spectrum of p;([¢]) — 11 is given by

1

- <pi([d>]) - ;1) = (XA, Ae0,5)

» The collection of spectra for [¢] € P(H):

1 XL
U PH — [0,2] C U([¢) = {AL A, AL



First Convexity Theorem

» Ay := U(PH) is a convex polytope.

» Follows from the momentum map convexity theorem (Kirwan
'84)

» Higuchi, Sudbery, Szulc '03 - This polytope is given by the
intersection of

1 1
“(34)=2 ()
J#i

with the cube [0, 1]7".



Polytopes for 2 and 3 qubits
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Second Convexity Theorem

>

>

>

Cy = [G.9]
Ac, = U(Cy) is a convex polytope.
Follows from the convexity theorem of Brion '87

Ac, is called an Entanglement Polytope (EP)

¢
Introduced to QI in "12 (AS, Oszmaniec, Ku$) and (Walter,
Doran, Gross, Christandl)

Although for L > 4 the number of classes C is infinite, the
number of polytopes A¢ is always finite!

Brion's theorem: Finding EPs requires knowing the generating
set of covariants.

This was solved only up to 4 qubits (Briand, Luque, J.-Y.
Thibon 2003).



Entanglement Polytopes for three qubits
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Properties of Entanglement Polytopes

» Entanglement polytopes are typically not disjoint,
Ac N Acr # 0.

» Example: Acg,,, = Ay thus Ac, C Acg,y,, for every Cy
» Entanglement polytopes can be regarded as entanglement
witnesses.
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Properties of Entanglement Polytopes
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EPs as entanglement witnesses:

» For [¢] € P(H) we give a list of polytopes that do not contain
Y([g]).

» The decision-making power of EPs is determined by the
volume of the region in Ay where many EPs overlap.

» Problem: Finding entanglement polytopes, even for five
qubits, is in fact intractable!



Resolving overlaps
» For a polytope A¢ let Ao be the point that is closest to the
origin 0.
» Using momentum map techniques we can construct a protocol
that transforms a given state ¢ using G operations to a state

with A = >\C¢-
» This way we can (at least partially) resolve overlaps between
polytopes)
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Understan_d the distribution of
IAcll? in Ay

for large number of qubits.



Procedure for finding A¢ for L qubits

» '15 TM and A. Sawicki - the procedure for finding A\¢ using
momentum map results of Kirwan and Ness

1. Construct L-dimensional hypercube whose vertices have
coordinates i%.

2. Chose L out of 2% vertices and consider the plane P
containing the chosen points .

3. Find the closest point p to the origin 0 in P.

4. Point p = A¢ for some A¢ iff p does not lie on an edge of the
hypercube.



3 qubits

u(ow)
o) = = (011) + 101) + 110y
éw) = 7(|011>+\101>+|110>) ($anz) = 7<|000>+|111>>

|¢B1) = (11) ® (|11) + |00))
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Finding || \¢||?

» Linear Entropy (mean purity)

—1——Ztrpl

> [¢] is critical iff

dE([¢]) =0

» Fact |[Ac||?> = —LE.+ £, where E. is a critical value of E(-)



Histograms for 20 and 200 qubits, sample of 10% points
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Implications - region with a weak entanglement witnessing




Implications - the feasibility of entanglement distillation
protocols

Such a protocol (gradient flow of E) transforms a given state
¢ € C using SLOCC operations to a state with critical local spectra
Ac.
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Implications - required purity of states

For a mixed state p with Trp? = p there exists a pure state 1/ such

that (iplt) > p and [[¥(p) — W(@)]| < 6.(p) = £(1 — v2Zp—1).



Implications - required purity of states

For a mixed state p with Trp? = p there exists a pure state 1/ such

that (1lpli) > p and [[W(p) — W(6)]| < 61.(p) = £(1 — yZp—1).
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Dashed lines — 6,(p), black line — E [|[Ac||?] = £, black dots —
polytopes closest to zero.



Procedure for finding |[A¢||? for L qubits

» For vectors v1,...,v; € R" let
(v1fo1)
G(@la 7Uk) -
(Vk[01)

> |G(v1,...,0;)| :=det G(vy,...,Tk)

(01]k)
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Example

Vg — U3
v3
1 ) 32v2
V—§Sd, d“ = 5
) 1 - 9 1 _ o _
1% :g‘G(Ulav2aU3)| S :§|G(v1—v3,v2—v3)!
d2 _ ‘G(617E2aﬁ3)|

|G(v) — 73,02 — T3)’



Formula for |[X¢||?

1 (G, )
4 |G(@1 —Vr,...,0[—1 —WL)7

el =

where 7; € R are vectors with £1 entries — Bernoulli vectors



The model

» Vertices of the L-dimensional cube with Bernoulli vertices are
uniformly distributed on S“~1 with 72 = L.

» Let o = (v1,...,vr)" € RY be a Gaussian vector, i.e.
UV ~ N(O, 1).
e (4P
(2m)"

» The distribution of ¥ is isotropic. ||7]|?

and 0 = V2L

» When L — oo the ratio @ — 0

is X% with the mean L

» Problem: Calculate distribution of == _,(7 "':EL”_, for
B |G(©1—vL,....0—1—71)|
v; ~ N(0,1)



The model




Conclucisons

» The closet points to the origin of the EPs accumulate close to
the origin

» The mean of [A¢|* is ;-

» The usefulness of EPs depends on purity and experimental
precision for large L
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