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Description of measurements in quantum mechanics

• self-adjoint observable M =
∑

m∈σ(M) mPm ∈ B(H)

• prepared state Tr (ρ−) on the measured subsystemM = B(H)
described by a density matrix ρ ∈ B(H)+1

selective measurement: e.g. Stern–Gerlach, double-slit experiments
non-unitary, non-linear, probabilistic ‘jump’ of the state

ρ −→ Pm with probability Tr (ρPm)

interpretation of probability Tr (ρPm): relative frequency of the spectral
outcome m in repeated experiments with identically prepared states

instead of jump use a dynamical process: ρ0 −→ ρ∞ = Pm

NU, NL, PR fundamental dynamics forM? No.

∞ degrees of freedom of the measuring device D
& U,L,D dynamics for the composite quantum systemM+D
& poor knowledge of initial state ofM+D
⇒

NU, NL, PR effective dynamics forM
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Qualitative reasoning of the NU, NL, PR effective dynamics

The impact of∞ degrees of freedom in quantum theories

existence of unitary inequivalent representations of observables:
superselection sectors in QFTs, inequivalent vacuum reps, ...

existence of essentially (not only unitary) inequivalent vacuum
representations, namely, different phases of QFTs:
different SSB patterns, low / high T phase of the Ising quantum chain, ...

effective NU and NL time evolution of the state ofM
due to the∞ degrees of freedom of D

The impact of poor knowledge of the state ρ ∈ S(M+D)

ρM0 ∈ S(M) is ‘identically’ prepared in repeated experiments, however,
the initial state ρ0 of theM+D composite system is unknown

ρ0 ∈ Tr−1
D (ρM0 ) := {ρ ∈ S(M+D) |TrD(ρ) = ρM0 } ⊂ S(M+D)

⇒ U,L,D dynamics for ρ −→ ρ0-dependent effective dynamics for ρM0
⇒ repeated experiments with ‘identically’ prepared ρM0 = repeated runs
with randomly chosen effective dynamics parametrized by Tr−1

D (ρM0 )
⇒ random occurence of t →∞ asymptotic fixed-points ρM∞ ∈ {Pm}
of the effective NU, NL dynamics
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Qualitative reasoning of the NU, NL, PR effective dynamics

a classical analog: classical elastic collision dynamics of a large particle
L in the sea S of small particles with given masses and radii

• initial state (positions, velocities) ρ0 of the L + S system is known
⇒ D collision dynamics

• only the initial state ρL
0 of L is known

(ρ0 ∈ ”Tr−1
S (ρL

0)” ⊂ S(L + S) is arbitrary)
but a probability distribution on ”Tr−1

S (ρL
0)” is given

⇒ effective PR dynamics for L, namely, Brownian motion

back to selective measurement in QM – idea of T. Geszti:
whatever probability distribution is given or derived on Tr−1

D (ρM0 )
on the set of compatible but unknown initial states ofM+D,
or equivalently, on the set of emerging effective dynamics,
it should be such that the Born rule holds:
measure of the attraction region of the asymptotic fixed-point ρM∞ = Pm

as a subset in Tr−1
D (ρM0 ) should be equal to Tr (ρM0 Pm)

P. Vecsernyés Effective dynamical model for selective measurement
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Lindblad’s results on CP maps and subsystems

full system: B(HM ⊗HD), subsystem: B(HM )

U dynamics on full system→ CP time evolution on subsystem
if Ut ∈ U(HM ⊗HD), t ∈ R is a unitary dynamics on the full system then

B(HM ) 3 A 7→ Φt (A) := TrD [(1M ⊗ ρD)U∗t (A⊗ 1D)Ut ] ∈ B(HM )

{t ∈ R} family of unit preserving CP maps on B(HM )

CP on subsystem→ U on extended (= full) system
every CP1 map on the subsystem can be obtained as a restriction of an
isometric/unitary sandwiching on a full system

Lindblad dynamics: special family of CP1 maps
• form a semigroup: Φt ◦ Φs = Φt+s; t , s ∈ R+,
• has a bounded generator L: Φt = exp(tL)
• NU,L,D effective dynamics for a subsystem

P. Vecsernyés Effective dynamical model for selective measurement
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Generator of NU CP1 semigroup dynamics: Lindblad generator

Theorem (Lindblad; 1976) on the generator of a CP1 semigroup
Let L : B(H)→ B(H) bounded linear ∗-map.
Φt := exp(tL) ∈ CP1(B(H))σ, t ≥ 0⇔ L has the form

L(A) = i[H,A] +
∑

k

V ∗k AVk −
1
2
{V ∗k Vk ,A}, A ∈ B(H),

where H = H∗; Vk ,
∑

k V ∗k Vk ∈ B(H).

Lindblad equation: generalization of the Schrödinger equation
• normal state on B(H) given by density matrix ρ
• Heisenberg↔ Schrödinger picture change: Tr (L̂(ρ)A) := Tr (ρL(A))

dρ
dt

= L̂(ρ) := −i[H, ρ] +
∑

k

VkρV ∗k −
1
2
{V ∗k Vk , ρ}

linear first order differential equation on density matrices

P. Vecsernyés Effective dynamical model for selective measurement
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GP effective one particle state in Bose–Einstein condensation

Trapped interacting N-boson Hamiltonian in 3D: H⊗N ,H := L2(R3)

H̃N =
N∑

j=1

(−∆rj + Vext (rj )) +
N∑

i<j

VN(ri − rj )

• 0 < Vext (r)→∞, |r| → ∞
• 0 < VN(r) = VN(|r|) = N2V (N|r|)
smooth with compact support and scattering length a = a0/N
Conjectured effective one-particle description in the N →∞ limit:
Gross–Pitaevskii NL evolution equation and energy functional in H

i∂tϕ(t) = −∆ϕ(t) + σ|ϕ(t)|2ϕ(t), ϕ(t) ∈ H, ‖ϕ‖ = 1

EGP(ϕ) :=

∫
d3r(|∇ϕ(r)|2 + Vext (r)|ϕ(r)|2 + 4πa0|ϕ(r)|4), ‖ϕ‖ = 1

Theorem (Lieb, Seiringer; 2002) on BE-condensation
Let ψN be the ground state of H̃N and let γ(k)

N , 1 ≤ k ≤ N be its k -particle
marginal density operator. Let σ := 8πNa = 8πa0 in the GP equation
and let ϕGP be the minimizer of EGP . Then

γ
(k)
N → |ϕGP〉〈ϕGP |k⊗, N →∞

pointwise for any fixed k .
P. Vecsernyés Effective dynamical model for selective measurement
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GP effective NL dynamics after Bose–Einstein condensation

N-particle Hamiltonian with trap removed

HN =
N∑

j=1

−∆rj +
N∑

i<j

VN(ri − rj )

Theorem (Erdős, Schlein, Yau; 2007) on GP-dynamics
Let ψN(t) be the solution of the Schrödinger equation
i∂tψN(t) = HNψN(t) with H̃N ground state initial condition ψN(0) := ψN

and let γ(1)
N (t) be its one-particle marginal density. Then for any t ≥ 0

γ
(1)
N (t)→ |ϕ(t)〉〈ϕ(t)|, N →∞

pointwise for compact operators on H, where ϕ(t) solves the
GP-equation

i∂tϕ(t) = −∆ϕ(t) + 8πa0|ϕ(t)|2ϕ(t)

with initial condition ϕ(0) := ϕGP .

Conjecture: ψN(0) 6= ψN initial state in the inverse image of ϕGP leads to
a NL effective dynamics as N →∞ different from the NL GP dynamics

P. Vecsernyés Effective dynamical model for selective measurement
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Existence of initial state dependent effective dynamics

F = full system: B(HF ) := B(HM ⊗HD)
B(HM ): (measured) subsystem
B(HD): environment (measuring device)

initial density matrix (= initial normal state) on B(HM ): ρM
0

⇒ compatible initial density matrices on B(HF ):

Tr−1
D (ρM

0 ) := {ρF
0 ∈ B(HF )+1 |TrD (ρF

0 ) = ρM
0 }

partial trace inverse image (normal states) of ρS
0 in B(HF )+1

the start of effective dynamics from the unitary one

dρM
0

dt
= −i TrD [HF , ρF

0 ],
dρF

0

dt
= −i[HF , ρF

0 ]

heavily depends on the initial choice of ρF
0 ∈ Tr−1

E (ρS
0 )

through the surviving, ρF
0 -dependent "HM -blocks"

given probability distribution on Tr−1
D (ρM

0 ) ⇒
given probability distribution of effective (initial) dynamics on ρM

0

P. Vecsernyés Effective dynamical model for selective measurement



wigner-logo-ok06

Qualitative picture Results for effective dynamics Effective dynamics for SM Closing remarksLindblad generator GP dynamics Possibility of initial state dependent effective dynamics

Existence of initial state dependent effective dynamics

F = full system: B(HF ) := B(HM ⊗HD)
B(HM ): (measured) subsystem
B(HD): environment (measuring device)

initial density matrix (= initial normal state) on B(HM ): ρM
0

⇒ compatible initial density matrices on B(HF ):

Tr−1
D (ρM

0 ) := {ρF
0 ∈ B(HF )+1 |TrD (ρF

0 ) = ρM
0 }

partial trace inverse image (normal states) of ρS
0 in B(HF )+1

the start of effective dynamics from the unitary one

dρM
0

dt
= −i TrD [HF , ρF

0 ],
dρF

0

dt
= −i[HF , ρF

0 ]

heavily depends on the initial choice of ρF
0 ∈ Tr−1

E (ρS
0 )

through the surviving, ρF
0 -dependent "HM -blocks"

given probability distribution on Tr−1
D (ρM

0 ) ⇒
given probability distribution of effective (initial) dynamics on ρM

0

P. Vecsernyés Effective dynamical model for selective measurement



wigner-logo-ok06

Qualitative picture Results for effective dynamics Effective dynamics for SM Closing remarks1. CP1 dyamics in SM 2. nonlinear dyamics in SM

Two-step effective dynamics for selective measurements (SM)

Instead of "jumps" try a "very fast" dynamical description of SM:
SM result should be an asymptotic state of an effective dynamics
• family of effective dynamics is not derived only given by hand
• technical restriction: measured (sub)systems live in finite dimensional
Hilbert spaces⇒ M = M∗ =

∑
m∈σ(M) mPm ∈ B(H) ' Mn(C)

two types of effective dynamics for density matrices ρ ∈ Sn := Mn(C)+1

in two consecutive asymptotic steps
• step 1: NU, L, D effective CP1-dynamics
with M-decohered asymptotic state (non-selective measurement):

ρ0 → lim
t→∞

ρ(t) =: ρ∞ =
∑

m∈σ(M)

Pmρ0Pm =: ΦM (ρ0)

• step 2: "randomly chosen" NL, D effective dynamics from M-decohered
to M-pure asymptotic states Pm ∈ SM := Sn|〈M〉 with probability
(= relative frequency) pm := Tr (ρ0Pm) = Tr (ρ∞Pm) =: Tr (µ0Pm)

SM 3 ρ∞|〈M〉 =: µ0 → lim
t→∞

µ(t) =: µ∞ = Pm

(=⇒ possibility of the idealization of two consecutive asymptotic steps)

P. Vecsernyés Effective dynamical model for selective measurement
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in two consecutive asymptotic steps
• step 1: NU, L, D effective CP1-dynamics
with M-decohered asymptotic state (non-selective measurement):

ρ0 → lim
t→∞

ρ(t) =: ρ∞ =
∑

m∈σ(M)

Pmρ0Pm =: ΦM (ρ0)

• step 2: "randomly chosen" NL, D effective dynamics from M-decohered
to M-pure asymptotic states Pm ∈ SM := Sn|〈M〉 with probability
(= relative frequency) pm := Tr (ρ0Pm) = Tr (ρ∞Pm) =: Tr (µ0Pm)

SM 3 ρ∞|〈M〉 =: µ0 → lim
t→∞

µ(t) =: µ∞ = Pm

(=⇒ possibility of the idealization of two consecutive asymptotic steps)
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1. NU, L, D effective CP1 dynamics with specific Lindblad operators

Describing M-decoherence – how to choose the Lindblad operators –
one can rely on previous works:
Baumgartner, Narnhofer (2008), Weinberg (2016)

Proposition (PV): The set of asymptotic states of a Lindblad evolution

dρ
dt

= L̂(ρ) := −i[H, ρ] +
∑

k

VkρV ∗k −
1
2
{V ∗k Vk , ρ}.

is equal to the set ΦM (Sn) of M-decohered states iff {H,Vk ,V ∗k }′′ = 〈M〉.
Any initial state leads to an asymptotic state iff {Vk ,V ∗k }′′ = 〈M〉, and
then

Sn 3 ρ0 → ρ∞ := lim
t→∞

exp(t L̂)(ρ0) = ΦM (ρ0) :=
∑

m∈σ(M)

Pmρ0Pm

P. Vecsernyés Effective dynamical model for selective measurement



wigner-logo-ok06

Qualitative picture Results for effective dynamics Effective dynamics for SM Closing remarks1. CP1 dyamics in SM 2. nonlinear dyamics in SM

2. Family of NU, NL, D effective dynamics for M-purification

family of effective dynamics and a probability distribution on them:
• family is parametrized by SM = {µext =

∑n
i=1 siPi} ⊂ Sn

set of ‘external’ density matrices on 〈M〉 ⊂ Mn,
convex combinations of spectral projections of M
• simplest, i.e. uniform probability distribution on SM

with respect to the Lebesgue measure in SM ⊂ Rn−1 ∩ [0, 1]n

µext -dependent NU, NL, D dynamics on SM :
dµ
dt

= aF (µ, µext ) := a [µ(λµ− µext )− µTrµ(λµ− µext )] , µ ∈ SM (1)

• a > 0 ”evolution strength”
• λ ≡ λ(µ, µext ) := max{κ ∈ [0, 1] |µext − κµ ≥ 0},
µext ≡

∑
i siPi is the convex combination µext = λµ+

∑
i 6=j λiPi

Figure: n = 3, j = 2
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2
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2. Asymptotic fixed-point structure of the NU, NL,D effective dynamics

Theorem (PV) on the asymptotic fixed-point structure of the dynamics (1)
If µext ∈ SM is chosen uniformly wrt the Lebesgue measure on SM then
the asymptotic state µ∞ := limt→∞ µ(t) of the dynamics (1) on SM with
initial state µ0 =

∑n
i=1 piPi is equal to Pi with probability pi = Trµ0Pi .

short illustration / explanation: the attractor region of Pi contains
the open subsimplex Int Si (µ0) ⊂ SM =: {µext}
⇒ uniform choice of µext within SM leads to

relative frequency of outcome (µ∞ = Pi ) =
V (Si (µ0))

V (SM )
= pi = Trµ0Pi
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Closing remarks

one can try one-step dynamics: dρ/dt = L̂(ρ) + aF (ΦM (ρ), µext )
⇒ idealized two-step dynamics arises as a→ 0,
when M-decoherence is much faster than M-purification

experimental verification of the dynamical nature of measurements
needs slow ‘measuring process’ and quick switch on/off possibility of the
measuring device without disturbing the state of the measured system:
instead of the outcome distribution at t =∞ from t = 0 data, i.e.
given µ0 =

∑
piPi and uniform µext in SM 7→ µ∞ = Pi with probability pi

a switch-off and immediate switch-on at intermediate time 0 < T <∞
⇒ t = T ‘final’ distribution of µT as initial distribution with new (uniformly
chosen) µext may lead to a T -dependent asymptotic distibution of µ∞,
which is numerically calculable from the given NL, D effective dynamics

in case of unbounded or continuous spectra, M /∈ Mn (position operator)
write σ(M) ⊆ R as a partition of finitely many spectral intervals⇒
spectral interval projections lead to f.d. algebra approximations

in case of joint measurements of commuting operators
(position coordinate operators in Rd )
use products of commuting spectral (interval) projections
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"God does not play dice with the universe."
A. Einstein
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