An effective dynamical model for selective measurement in discrete quantum systems

Péter Vecsernyés

Wigner RC, Budapest

Entanglement Days 2018, Budapest

Content

Quantitative results for effective dynamics in QM: CP and nonlinear

- Lindblad's non-unitary linear effective CP1 dynamics
- The Gross–Pitaevskii (GP) nonlinear effective dynamics
- Possibility of initial state dependent effective dynamics
- 3 A two-step effective dynamics for selective measurement of $M \in M_n(\mathbb{C})$
 - First step: non-unitary effective *CP*₁ dynamics for *M*-decoherence
 - Second step: nonlinear effective dynamics for *M*-purification

Closing remarks

Qualitative picture Results for effective dynamics Effective dynamics for SM

Description of measurements in quantum mechanics

• self-adjoint observable $M = \sum_{m \in \sigma(M)} m P_m \in \mathcal{B}(\mathcal{H})$

• prepared state $\operatorname{Tr}(\rho -)$ on the measured subsystem $\mathcal{M} = \mathcal{B}(\mathcal{H})$ described by a density matrix $\rho \in \mathcal{B}(\mathcal{H})_{+1}$

• selective measurement: e.g. Stern–Gerlach, double-slit experiments non-unitary, non-linear, probabilistic 'jump' of the state

 $\rho \longrightarrow P_m$ with probability Tr (ρP_m)

interpretation of probability $Tr(\rho P_m)$: relative frequency of the spectral outcome *m* in repeated experiments with identically prepared states

• instead of jump use a dynamical process: $\rho_0 \longrightarrow \rho_\infty = P_m$

NU, NL, PR fundamental dynamics for \mathcal{M} ? No.

 ∞ degrees of freedom of the measuring device \mathcal{D} & U,L,D dynamics for the composite quantum system $\mathcal{M} + \mathcal{D}$ & poor knowledge of initial state of $\mathcal{M} + \mathcal{D}$

NU, NL, PR effective dynamics for \mathcal{M}

Qualitative picture Results for effective dynamics Effective dynamics for SM

Description of measurements in quantum mechanics

• self-adjoint observable $M = \sum_{m \in \sigma(M)} m P_m \in \mathcal{B}(\mathcal{H})$

• prepared state $\operatorname{Tr}(\rho -)$ on the measured subsystem $\mathcal{M} = \mathcal{B}(\mathcal{H})$ described by a density matrix $\rho \in \mathcal{B}(\mathcal{H})_{+1}$

• selective measurement: e.g. Stern–Gerlach, double-slit experiments non-unitary, non-linear, probabilistic 'jump' of the state

 $\rho \longrightarrow P_m$ with probability $\operatorname{Tr}(\rho P_m)$

interpretation of probability $Tr(\rho P_m)$: relative frequency of the spectral outcome *m* in repeated experiments with identically prepared states

• instead of jump use a dynamical process: $\rho_0 \longrightarrow \rho_\infty = P_m$

NU, NL, PR fundamental dynamics for \mathcal{M} ? No.

 $\begin{array}{l} \infty \text{ degrees of freedom of the measuring device } \mathcal{D} \\ \& \text{ U,L,D dynamics for the composite quantum system } \mathcal{M} + \mathcal{D} \\ \& \text{ poor knowledge of initial state of } \mathcal{M} + \mathcal{D} \\ \Rightarrow \end{array}$

NU, NL, PR effective dynamics for $\ensuremath{\mathcal{M}}$

The impact of ∞ degrees of freedom in quantum theories

- existence of unitary inequivalent representations of observables: superselection sectors in QFTs, inequivalent vacuum reps, ...
- existence of essentially (not only unitary) inequivalent vacuum representations, namely, different phases of QFTs: different SSB patterns, low / high T phase of the Ising quantum chain, ...
- effective NU and NL time evolution of the state of ${\cal M}$ due to the ∞ degrees of freedom of ${\cal D}$

The impact of poor knowledge of the state $\rho \in S(M + D)$

• $\rho_0^{\mathcal{M}} \in \mathcal{S}(\mathcal{M})$ is 'identically' prepared in repeated experiments, however, the initial state ρ_0 of the $\mathcal{M} + \mathcal{D}$ composite system is unknown

 $\rho_0 \in \operatorname{Tr}_{\mathcal{D}}^{-1}(\rho_0^{\mathcal{M}}) := \{ \rho \in \mathcal{S}(\mathcal{M} + \mathcal{D}) \, | \, \operatorname{Tr}_{\mathcal{D}}(\rho) = \rho_0^{\mathcal{M}} \} \subset \mathcal{S}(\mathcal{M} + \mathcal{D})$

⇒ U,L,D dynamics for $\rho \longrightarrow \rho_0$ -dependent effective dynamics for $\rho_0^{\mathcal{M}}$ ⇒ repeated experiments with 'identically' prepared $\rho_0^{\mathcal{M}}$ = repeated runs with randomly chosen effective dynamics parametrized by $\operatorname{Tr}_{\mathcal{D}}^{-1}(\rho_0^{\mathcal{M}})$ ⇒ random occurence of $t \to \infty$ asymptotic fixed-points $\rho_{\infty}^{\mathcal{M}} \in \{P_m\}$ of the effective NU, NL dynamics

The impact of ∞ degrees of freedom in quantum theories

- existence of unitary inequivalent representations of observables: superselection sectors in QFTs, inequivalent vacuum reps, ...
- existence of essentially (not only unitary) inequivalent vacuum representations, namely, different phases of QFTs: different SSB patterns, low / high T phase of the Ising quantum chain, ...
- effective NU and NL time evolution of the state of ${\cal M}$ due to the ∞ degrees of freedom of ${\cal D}$

The impact of poor knowledge of the state $\rho \in S(M + D)$

• $\rho_0^{\mathcal{M}} \in \mathcal{S}(\mathcal{M})$ is 'identically' prepared in repeated experiments, however, the initial state ρ_0 of the $\mathcal{M} + \mathcal{D}$ composite system is unknown

$$\rho_0 \in \mathrm{Tr}_{\mathcal{D}}^{-1}(\rho_0^{\mathcal{M}}) := \{ \rho \in \mathcal{S}(\mathcal{M} + \mathcal{D}) \, | \, \mathrm{Tr}_{\mathcal{D}}(\rho) = \rho_0^{\mathcal{M}} \} \subset \mathcal{S}(\mathcal{M} + \mathcal{D})$$

⇒ U,L,D dynamics for $\rho \longrightarrow \rho_0$ -dependent effective dynamics for $\rho_0^{\mathcal{M}}$ ⇒ repeated experiments with 'identically' prepared $\rho_0^{\mathcal{M}}$ = repeated runs with randomly chosen effective dynamics parametrized by $\operatorname{Tr}_{\mathcal{D}}^{-1}(\rho_0^{\mathcal{M}})$ ⇒ random occurence of $t \to \infty$ asymptotic fixed-points $\rho_{\infty}^{\mathcal{M}} \in \{P_m\}$ of the effective NU, NL dynamics

• • • • • • • • • • • • •

- a classical analog: classical elastic collision dynamics of a large particle *L* in the sea *S* of small particles with given masses and radii
 - initial state (positions, velocities) ρ_0 of the L + S system is known \Rightarrow D collision dynamics
 - only the initial state ρ_0^L of *L* is known $(\rho_0 \in "\operatorname{Tr}_S^{-1}(\rho_0^L)" \subset S(L+S)$ is arbitrary) but a probability distribution on " $\operatorname{Tr}_S^{-1}(\rho_0^L)$ " is given \Rightarrow effective PR dynamics for *L*, namely, Brownian motion
- back to selective measurement in QM idea of T. Geszti: whatever probability distribution is given or derived on $\operatorname{Tr}_{\mathcal{D}}^{-1}(\rho_0^{\mathcal{M}})$ on the set of compatible but unknown initial states of $\mathcal{M} + \mathcal{D}$, or equivalently, on the set of emerging effective dynamics, it should be such that the Born rule holds: measure of the attraction region of the asymptotic fixed-point $\rho_{\infty}^{\mathcal{M}} = P_m$ as a subset in $\operatorname{Tr}_{\mathcal{D}}^{-1}(\rho_0^{\mathcal{M}})$ should be equal to $\operatorname{Tr}(\rho_0^{\mathcal{M}}P_m)$

- a classical analog: classical elastic collision dynamics of a large particle *L* in the sea *S* of small particles with given masses and radii
 - initial state (positions, velocities) ρ_0 of the L + S system is known \Rightarrow D collision dynamics

• only the initial state ρ_0^L of L is known ($\rho_0 \in "\operatorname{Tr}_{\mathcal{S}}^{-1}(\rho_0^L)" \subset \mathcal{S}(L + \mathcal{S})$ is arbitrary) but a probability distribution on " $\operatorname{Tr}_{\mathcal{S}}^{-1}(\rho_0^L)$ " is given \Rightarrow effective PR dynamics for L, namely, Brownian motion

• back to selective measurement in QM – idea of T. Geszti: whatever probability distribution is given or derived on $\operatorname{Tr}_{\mathcal{D}}^{-1}(\rho_0^{\mathcal{M}})$ on the set of compatible but unknown initial states of $\mathcal{M} + \mathcal{D}$, or equivalently, on the set of emerging effective dynamics, it should be such that the Born rule holds: measure of the attraction region of the asymptotic fixed-point $\rho_{\infty}^{\mathcal{M}} = P_m$ as a subset in $\operatorname{Tr}_{\mathcal{D}}^{-1}(\rho_0^{\mathcal{M}})$ should be equal to $\operatorname{Tr}(\rho_0^{\mathcal{M}}P_m)$

- a classical analog: classical elastic collision dynamics of a large particle *L* in the sea *S* of small particles with given masses and radii
 - initial state (positions, velocities) ρ_0 of the L + S system is known \Rightarrow D collision dynamics

• only the initial state ρ_0^L of *L* is known ($\rho_0 \in "\operatorname{Tr}_{\mathcal{S}}^{-1}(\rho_0^L)" \subset \mathcal{S}(L+\mathcal{S})$ is arbitrary) but a probability distribution on " $\operatorname{Tr}_{\mathcal{S}}^{-1}(\rho_0^L)$ " is given \Rightarrow effective PR dynamics for *L*, namely, Brownian motion

• back to selective measurement in QM – idea of T. Geszti: whatever probability distribution is given or derived on $\operatorname{Tr}_{\mathcal{D}}^{-1}(\rho_0^{\mathcal{M}})$ on the set of compatible but unknown initial states of $\mathcal{M} + \mathcal{D}$, or equivalently, on the set of emerging effective dynamics, it should be such that the Born rule holds: measure of the attraction region of the asymptotic fixed-point $\rho_{\infty}^{\mathcal{M}} = P_m$ as a subset in $\operatorname{Tr}_{\mathcal{D}}^{-1}(\rho_0^{\mathcal{M}})$ should be equal to $\operatorname{Tr}(\rho_0^{\mathcal{M}}P_m)$

Lindblad's results on CP maps and subsystems

full system: $\mathcal{B}(\mathcal{H}_M \otimes \mathcal{H}_D)$, subsystem: $\mathcal{B}(\mathcal{H}_M)$

• U dynamics on full system \rightarrow CP time evolution on subsystem if $U_t \in \mathcal{U}(\mathcal{H}_M \otimes \mathcal{H}_D), t \in \mathbb{R}$ is a unitary dynamics on the full system then

 $\mathcal{B}(\mathcal{H}_M) \ni \mathbf{A} \mapsto \Phi_t(\mathbf{A}) := \operatorname{Tr}_{\mathcal{D}} \left[(\mathbf{1}_M \otimes \rho_D) U_t^* (\mathbf{A} \otimes \mathbf{1}_D) U_t \right] \in \mathcal{B}(\mathcal{H}_M)$

 $\{t \in \mathbb{R}\}$ family of unit preserving CP maps on $\mathcal{B}(\mathcal{H}_M)$

- CP on subsystem → U on extended (= full) system every CP₁ map on the subsystem can be obtained as a restriction of an isometric/unitary sandwiching on a full system
- Lindblad dynamics: special family of *CP*₁ maps
 - form a semigroup: $\Phi_t \circ \Phi_s = \Phi_{t+s}$; $t, s \in \mathbb{R}_+$,
 - has a bounded generator *L*: $\Phi_t = \exp(tL)$
 - NU,L,D effective dynamics for a subsystem

A (10) × A (10) × A (10)

Lindblad's results on CP maps and subsystems

full system: $\mathcal{B}(\mathcal{H}_M \otimes \mathcal{H}_D)$, subsystem: $\mathcal{B}(\mathcal{H}_M)$

• U dynamics on full system \rightarrow CP time evolution on subsystem if $U_t \in \mathcal{U}(\mathcal{H}_M \otimes \mathcal{H}_D), t \in \mathbb{R}$ is a unitary dynamics on the full system then

 $\mathcal{B}(\mathcal{H}_M) \ni \mathbf{A} \mapsto \Phi_t(\mathbf{A}) := \operatorname{Tr}_{\mathcal{D}} \left[(\mathbf{1}_M \otimes \rho_D) U_t^* (\mathbf{A} \otimes \mathbf{1}_D) U_t \right] \in \mathcal{B}(\mathcal{H}_M)$

 $\{t \in \mathbb{R}\}$ family of unit preserving CP maps on $\mathcal{B}(\mathcal{H}_M)$

- CP on subsystem → U on extended (= full) system every CP₁ map on the subsystem can be obtained as a restriction of an isometric/unitary sandwiching on a full system
- Lindblad dynamics: special family of CP1 maps
 - form a semigroup: $\Phi_t \circ \Phi_s = \Phi_{t+s}$; $t, s \in \mathbb{R}_+$,
 - has a bounded generator *L*: $\Phi_t = \exp(tL)$
 - NU,L,D effective dynamics for a subsystem

Generator of NU CP1 semigroup dynamics: Lindblad generator

 Theorem (Lindblad; 1976) on the generator of a *CP*₁ semigroup Let *L*: B(H) → B(H) bounded linear *-map.
 Φ_t := exp(tL) ∈ CP₁(B(H))_σ, t ≥ 0 ⇔ L has the form

$$L(A) = i[H, A] + \sum_{k} V_{k}^{*} A V_{k} - \frac{1}{2} \{ V_{k}^{*} V_{k}, A \}, \quad A \in \mathcal{B}(\mathcal{H}),$$

where $H = H^*$; V_k , $\sum_k V_k^* V_k \in \mathcal{B}(\mathcal{H})$.

- Lindblad equation: generalization of the Schrödinger equation
 normal state on B(H) given by density matrix ρ
 - Heisenberg \leftrightarrow Schrödinger picture change: $\operatorname{Tr}(\hat{L}(\rho)A) := \operatorname{Tr}(\rho L(A))$

$$\frac{d\rho}{dt} = \hat{L}(\rho) := -i[H,\rho] + \sum_{k} V_k \rho V_k^* - \frac{1}{2} \{V_k^* V_k,\rho\}$$

linear first order differential equation on density matrices

Generator of NU CP1 semigroup dynamics: Lindblad generator

 Theorem (Lindblad; 1976) on the generator of a *CP*₁ semigroup Let *L*: B(H) → B(H) bounded linear *-map.
 Φ_t := exp(tL) ∈ CP₁(B(H))_σ, t ≥ 0 ⇔ L has the form

$$L(A) = i[H, A] + \sum_{k} V_{k}^{*} A V_{k} - \frac{1}{2} \{ V_{k}^{*} V_{k}, A \}, \quad A \in \mathcal{B}(\mathcal{H}),$$

where $H = H^*$; V_k , $\sum_k V_k^* V_k \in \mathcal{B}(\mathcal{H})$.

- Lindblad equation: generalization of the Schrödinger equation
 - normal state on $\mathcal{B}(\mathcal{H})$ given by density matrix ρ
 - Heisenberg \leftrightarrow Schrödinger picture change: $\operatorname{Tr}(\hat{L}(\rho)A) := \operatorname{Tr}(\rho L(A))$

$$\frac{d\rho}{dt} = \hat{L}(\rho) := -i[H,\rho] + \sum_{k} V_{k}\rho V_{k}^{*} - \frac{1}{2} \{V_{k}^{*}V_{k},\rho\}$$

linear first order differential equation on density matrices

GP effective one particle state in Bose–Einstein condensation

• Trapped interacting N-boson Hamiltonian in 3D: $\mathcal{H}^{\otimes N}$, $\mathcal{H} := L^2(\mathbb{R}^3)$

$$ilde{\mathcal{H}}_N = \sum_{j=1}^N (-\Delta_{\mathbf{r}_j} + V_{ext}(\mathbf{r}_j)) + \sum_{i < j}^N V_N(\mathbf{r}_i - \mathbf{r}_j)$$

• 0 <
$$V_{ext}(\mathbf{r}) \rightarrow \infty$$
, $|\mathbf{r}| \rightarrow \infty$
• 0 < $V_N(\mathbf{r}) = V_N(|\mathbf{r}|) = N^2 V(N|\mathbf{r}|)$

smooth with compact support and scattering length $a = a_0/N$

• Conjectured effective one-particle description in the $N \to \infty$ limit:

$$\begin{split} i\partial_t \varphi(t) &= -\Delta \varphi(t) + \sigma |\varphi(t)|^2 \varphi(t), \quad \varphi(t) \in \mathcal{H}, \|\varphi\| = 1 \\ E_{GP}(\varphi) &:= \int d^3 r(|\nabla \varphi(\mathbf{r})|^2 + V_{ext}(\mathbf{r}) |\varphi(\mathbf{r})|^2 + 4\pi a_0 |\varphi(\mathbf{r})|^4), \ \|\varphi\| = 1 \end{split}$$

Theorem (Lieb, Seiringer; 2002) on BE-condensation

$$\gamma_{N}^{(k)}
ightarrow \left| \varphi_{GP}
ight
angle_{\left< \mathcal{GP}
ight|^{k \otimes}}, \quad N
ightarrow \infty$$

A = A = B
 A = B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

GP effective one particle state in Bose–Einstein condensation

• Trapped interacting N-boson Hamiltonian in 3D: $\mathcal{H}^{\otimes N}$, $\mathcal{H} := L^2(\mathbb{R}^3)$

$$ilde{\mathcal{H}}_N = \sum_{j=1}^N (-\Delta_{\mathbf{r}_j} + V_{ ext{ext}}(\mathbf{r}_j)) + \sum_{i < j}^N V_N(\mathbf{r}_i - \mathbf{r}_j)$$

• 0 <
$$V_{ext}(\mathbf{r}) \rightarrow \infty$$
, $|\mathbf{r}| \rightarrow \infty$
• 0 < $V_N(\mathbf{r}) = V_N(|\mathbf{r}|) = N^2 V(N|\mathbf{r}|)$

smooth with compact support and scattering length $a = a_0/N$

• Conjectured effective one-particle description in the $N \rightarrow \infty$ limit: Gross–Pitaevskii NL evolution equation and energy functional in \mathcal{H}

$$\begin{split} &i\partial_t \varphi(t) = -\Delta \varphi(t) + \sigma |\varphi(t)|^2 \varphi(t), \quad \varphi(t) \in \mathcal{H}, \|\varphi\| = 1 \\ &E_{GP}(\varphi) := \int d^3 r(|\nabla \varphi(\mathbf{r})|^2 + V_{ext}(\mathbf{r})|\varphi(\mathbf{r})|^2 + 4\pi a_0 |\varphi(\mathbf{r})|^4), \ \|\varphi\| = 1 \end{split}$$

Theorem (Lieb, Seiringer; 2002) on BE-condensation

Let ψ_N be the ground state of \tilde{H}_N and let $\gamma_N^{(k)}$, $1 \le k \le N$ be its k-particle

$$\gamma_N^{(k)} \to |\varphi_{GP}\rangle \langle \varphi_{GP}|^{k\otimes}, \quad N \to \infty$$

一日

Qualitative picture Results for effective dynamics Effective dynamics for SM

Lindblad generator GP dynamics Possibility of initial state dependent effect

GP effective one particle state in Bose-Einstein condensation

• Trapped interacting N-boson Hamiltonian in 3D: $\mathcal{H}^{\otimes N}, \mathcal{H} := L^2(\mathbb{R}^3)$

$$ilde{\mathcal{H}}_N = \sum_{j=1}^N (-\Delta_{\mathbf{r}_j} + V_{ ext{ext}}(\mathbf{r}_j)) + \sum_{i < j}^N V_N(\mathbf{r}_i - \mathbf{r}_j)$$

• 0 <
$$V_{ext}(\mathbf{r}) \rightarrow \infty$$
, $|\mathbf{r}| \rightarrow \infty$
• 0 < $V_N(\mathbf{r}) = V_N(|\mathbf{r}|) = N^2 V(N|\mathbf{r}|)$

smooth with compact support and scattering length $a = a_0/N$

 Conjectured effective one-particle description in the N → ∞ limit: Gross–Pitaevskii NL evolution equation and energy functional in H

$$\begin{split} i\partial_t\varphi(t) &= -\Delta\varphi(t) + \sigma|\varphi(t)|^2\varphi(t), \quad \varphi(t) \in \mathcal{H}, \|\varphi\| = 1 \\ E_{GP}(\varphi) &:= \int d^3r(|\nabla\varphi(\mathbf{r})|^2 + V_{ext}(\mathbf{r})|\varphi(\mathbf{r})|^2 + 4\pi a_0|\varphi(\mathbf{r})|^4), \ \|\varphi\| = 1 \end{split}$$

• Theorem (Lieb, Seiringer; 2002) on BE-condensation

Let ψ_N be the ground state of \tilde{H}_N and let $\gamma_N^{(k)}$, $1 \le k \le N$ be its *k*-particle marginal density operator. Let $\sigma := 8\pi Na = 8\pi a_0$ in the GP equation and let φ_{GP} be the minimizer of E_{GP} . Then

$$\gamma_{\textit{N}}^{(k)} \rightarrow \left|\varphi_{\textit{GP}}\right\rangle \! \left\langle \varphi_{\textit{GP}} \right|^{k \otimes}, \quad \textit{N} \rightarrow \infty$$

pointwise for any fixed k.

GP effective NL dynamics after Bose–Einstein condensation

• N-particle Hamiltonian with trap removed

$$H_N = \sum_{j=1}^N -\Delta_{\mathbf{r}_j} + \sum_{i < j}^N V_N(\mathbf{r}_i - \mathbf{r}_j)$$

• Theorem (Erdős, Schlein, Yau; 2007) on GP-dynamics Let $\psi_N(t)$ be the solution of the Schrödinger equation $i\partial_t\psi_N(t) = H_N\psi_N(t)$ with \tilde{H}_N ground state initial condition $\psi_N(0) := \psi_N$ and let $\gamma_N^{(1)}(t)$ be its one-particle marginal density. Then for any $t \ge 0$

 $\gamma_N^{(1)}(t)
ightarrow |\varphi(t)\rangle\langle \varphi(t)|, \quad N
ightarrow \infty$

pointwise for compact operators on \mathcal{H} , where $\varphi(t)$ solves the GP-equation

$$i\partial_t \varphi(t) = -\Delta \varphi(t) + 8\pi a_0 |\varphi(t)|^2 \varphi(t)$$

with initial condition $\varphi(\mathbf{0}) := \varphi_{GP}$.

• Conjecture: $\psi_N(0) \neq \psi_N$ initial state in the inverse image of φ_{GP} leads to a NL effective dynamics as $N \to \infty$ different from the NL GP dynamics

< 回 > < 三 > < 三 > 、

GP effective NL dynamics after Bose–Einstein condensation

• N-particle Hamiltonian with trap removed

$$H_N = \sum_{j=1}^N -\Delta_{\mathbf{r}_j} + \sum_{i < j}^N V_N(\mathbf{r}_i - \mathbf{r}_j)$$

• Theorem (Erdős, Schlein, Yau; 2007) on GP-dynamics Let $\psi_N(t)$ be the solution of the Schrödinger equation $i\partial_t\psi_N(t) = H_N\psi_N(t)$ with \tilde{H}_N ground state initial condition $\psi_N(0) := \psi_N$ and let $\gamma_N^{(1)}(t)$ be its one-particle marginal density. Then for any $t \ge 0$

 $\gamma_N^{(1)}(t)
ightarrow |\varphi(t)\rangle\langle \varphi(t)|, \quad N
ightarrow \infty$

pointwise for compact operators on \mathcal{H} , where $\varphi(t)$ solves the GP-equation

$$i\partial_t\varphi(t) = -\Delta\varphi(t) + 8\pi a_0 |\varphi(t)|^2 \varphi(t)$$

with initial condition $\varphi(0) := \varphi_{GP}$.

 Conjecture: ψ_N(0) ≠ ψ_N initial state in the inverse image of φ_{GP} leads to a NL effective dynamics as N → ∞ different from the NL GP dynamics

伺 ト イヨ ト イヨ ト

Existence of initial state dependent effective dynamics

F = full system: $\mathcal{B}(\mathcal{H}_F) := \mathcal{B}(\mathcal{H}_M \otimes \mathcal{H}_D)$ $\mathcal{B}(\mathcal{H}_M)$: (measured) subsystem $\mathcal{B}(\mathcal{H}_D)$: environment (measuring device)

initial density matrix (= initial normal state) on B(H_M): ρ₀^M ⇒ compatible initial density matrices on B(H_F):

$$\mathrm{Tr}_D^{-1}(\rho_0^M) := \{\rho_0^F \in \mathcal{B}(\mathcal{H}_F)_{+1} \,|\, \mathrm{Tr}_D(\rho_0^F) = \rho_0^M\}$$

partial trace inverse image (normal states) of ρ_0^S in $\mathcal{B}(\mathcal{H}_F)_{+1}$

• the start of effective dynamics from the unitary one

$$\frac{d\rho_0^M}{dt} = -i\operatorname{Tr}_D[H^F, \rho_0^F], \qquad \frac{d\rho_0^F}{dt} = -i[H^F, \rho_0^F]$$

heavily depends on the initial choice of $\rho_0^F \in \operatorname{Tr}_{\mathcal{E}}^{-1}(\rho_0^S)$ through the surviving, ρ_0^F -dependent " \mathcal{H}_M -blocks"

 given probability distribution on Tr_D⁻¹(ρ₀^M) ⇒ given probability distribution of effective (initial) dynamics on ρ₀^M

Existence of initial state dependent effective dynamics

F = full system: $\mathcal{B}(\mathcal{H}_F) := \mathcal{B}(\mathcal{H}_M \otimes \mathcal{H}_D)$ $\mathcal{B}(\mathcal{H}_M)$: (measured) subsystem $\mathcal{B}(\mathcal{H}_D)$: environment (measuring device)

initial density matrix (= initial normal state) on B(H_M): ρ₀^M ⇒ compatible initial density matrices on B(H_F):

$$\mathrm{Tr}_D^{-1}(\rho_0^M) := \{\rho_0^F \in \mathcal{B}(\mathcal{H}_F)_{+1} \,|\, \mathrm{Tr}_D(\rho_0^F) = \rho_0^M\}$$

partial trace inverse image (normal states) of ρ_0^S in $\mathcal{B}(\mathcal{H}_F)_{+1}$

• the start of effective dynamics from the unitary one

$$\frac{d\rho_0^M}{dt} = -i\operatorname{Tr}_D[H^F, \rho_0^F], \qquad \frac{d\rho_0^F}{dt} = -i[H^F, \rho_0^F]$$

heavily depends on the initial choice of $\rho_0^F \in \operatorname{Tr}_E^{-1}(\rho_0^S)$ through the surviving, ρ_0^F -dependent " \mathcal{H}_M -blocks"

• given probability distribution on $\operatorname{Tr}_D^{-1}(\rho_0^M) \Rightarrow$ given probability distribution of effective (initial) dynamics on ρ_0^M

Two-step effective dynamics for selective measurements (SM)

- Instead of "jumps" try a "very fast" dynamical description of SM: SM result should be an asymptotic state of an effective dynamics
 - family of effective dynamics is not derived only given by hand
 - technical restriction: measured (sub)systems live in finite dimensional Hilbert spaces $\Rightarrow M = M^* = \sum_{m \in \sigma(M)} mP_m \in \mathcal{B}(\mathcal{H}) \simeq M_n(\mathbb{C})$
- two types of effective dynamics for density matrices ρ ∈ S_n := M_n(C)₊₁ in two consecutive asymptotic steps
 - step 1: NU, L, D effective *CP*₁-dynamics

with *M*-decohered asymptotic state (non-selective measurement):

$$\rho_0 \to \lim_{t \to \infty} \rho(t) =: \rho_\infty = \sum_{m \in \sigma(M)} P_m \rho_0 P_m =: \Phi_M(\rho_0)$$

• step 2: "randomly chosen" NL, D effective dynamics from *M*-decohered to *M*-pure asymptotic states $P_m \in S_M := S_{n \mid \langle M \rangle}$ with probability (= relative frequency) $p_m := \operatorname{Tr}(\rho_0 P_m) = \operatorname{Tr}(\rho_\infty P_m) =: \operatorname{Tr}(\mu_0 P_m)$

$$S_M \ni \rho_{\infty|\langle M \rangle} =: \mu_0 \to \lim_{t \to \infty} \mu(t) =: \mu_\infty = P_m$$

 $(=\Rightarrow$ possibility of the idealization of two consecutive asymptotic steps)

(日)

Two-step effective dynamics for selective measurements (SM)

- Instead of "jumps" try a "very fast" dynamical description of SM: SM result should be an asymptotic state of an effective dynamics
 - family of effective dynamics is not derived only given by hand
 - technical restriction: measured (sub)systems live in finite dimensional Hilbert spaces $\Rightarrow M = M^* = \sum_{m \in \sigma(M)} mP_m \in \mathcal{B}(\mathcal{H}) \simeq M_n(\mathbb{C})$
- two types of effective dynamics for density matrices ρ ∈ S_n := M_n(ℂ)₊₁ in two consecutive asymptotic steps

• step 1: NU, L, D effective *CP*₁-dynamics with *M*-decohered asymptotic state (non-selective measurement):

$$\rho_0 \to \lim_{t \to \infty} \rho(t) =: \rho_\infty = \sum_{m \in \sigma(M)} P_m \rho_0 P_m =: \Phi_M(\rho_0)$$

• step 2: "randomly chosen" NL, D effective dynamics from *M*-decohered to *M*-pure asymptotic states $P_m \in S_M := S_{n \mid \langle M \rangle}$ with probability (= relative frequency) $p_m := \operatorname{Tr}(\rho_0 P_m) = \operatorname{Tr}(\rho_\infty P_m) =: \operatorname{Tr}(\mu_0 P_m)$

$$S_M \ni \rho_{\infty|\langle M \rangle} =: \mu_0 \to \lim_{t \to \infty} \mu(t) =: \mu_\infty = P_m$$

 $(= \Rightarrow \text{ possibility of the idealization of two consecutive asymptotic steps})$

Two-step effective dynamics for selective measurements (SM)

- Instead of "jumps" try a "very fast" dynamical description of SM: SM result should be an asymptotic state of an effective dynamics
 - family of effective dynamics is not derived only given by hand
 - technical restriction: measured (sub)systems live in finite dimensional Hilbert spaces $\Rightarrow M = M^* = \sum_{m \in \sigma(M)} mP_m \in \mathcal{B}(\mathcal{H}) \simeq M_n(\mathbb{C})$
- two types of effective dynamics for density matrices ρ ∈ S_n := M_n(ℂ)₊₁ in two consecutive asymptotic steps
 - step 1: NU, L, D effective *CP*₁-dynamics with *M*-decohered asymptotic state (non-selective measurement):

$$\rho_0 \to \lim_{t \to \infty} \rho(t) =: \rho_\infty = \sum_{m \in \sigma(M)} P_m \rho_0 P_m =: \Phi_M(\rho_0)$$

• step 2: "randomly chosen" NL, D effective dynamics from *M*-decohered to *M*-pure asymptotic states $P_m \in S_M := S_{n \mid \langle M \rangle}$ with probability (= relative frequency) $p_m := \operatorname{Tr} (\rho_0 P_m) = \operatorname{Tr} (\rho_\infty P_m) =: \operatorname{Tr} (\mu_0 P_m)$

$$S_M \ni \rho_{\infty|\langle M \rangle} =: \mu_0 \to \lim_{t \to \infty} \mu(t) =: \mu_\infty = P_m$$

 $(=\Rightarrow$ possibility of the idealization of two consecutive asymptotic steps)

・ 同 ト ・ ヨ ト ・ ヨ ト

Two-step effective dynamics for selective measurements (SM)

- Instead of "jumps" try a "very fast" dynamical description of SM: SM result should be an asymptotic state of an effective dynamics
 - family of effective dynamics is not derived only given by hand
 - technical restriction: measured (sub)systems live in finite dimensional Hilbert spaces $\Rightarrow M = M^* = \sum_{m \in \sigma(M)} mP_m \in \mathcal{B}(\mathcal{H}) \simeq M_n(\mathbb{C})$
- two types of effective dynamics for density matrices ρ ∈ S_n := M_n(ℂ)₊₁ in two consecutive asymptotic steps
 - step 1: NU, L, D effective *CP*₁-dynamics with *M*-decohered asymptotic state (non-selective measurement):

$$\rho_0 \to \lim_{t \to \infty} \rho(t) =: \rho_\infty = \sum_{m \in \sigma(M)} P_m \rho_0 P_m =: \Phi_M(\rho_0)$$

• step 2: "randomly chosen" NL, D effective dynamics from *M*-decohered to *M*-pure asymptotic states $P_m \in S_M := S_{n|\langle M \rangle}$ with probability (= relative frequency) $p_m := \operatorname{Tr}(\rho_0 P_m) = \operatorname{Tr}(\rho_\infty P_m) =: \operatorname{Tr}(\mu_0 P_m)$

$$S_M \ni \rho_{\infty|\langle M \rangle} =: \mu_0 \to \lim_{t \to \infty} \mu(t) =: \mu_\infty = P_m$$

 $(=\Rightarrow$ possibility of the idealization of two consecutive asymptotic steps)

1. NU, L, D effective CP₁ dynamics with specific Lindblad operators

- Describing M-decoherence how to choose the Lindblad operators one can rely on previous works: Baumgartner, Narnhofer (2008), Weinberg (2016)
- Proposition (PV): The set of asymptotic states of a Lindblad evolution

$$\frac{d\rho}{dt}=\hat{L}(\rho):=-i[H,\rho]+\sum_{k}V_{k}\rho V_{k}^{*}-\frac{1}{2}\{V_{k}^{*}V_{k},\rho\}$$

is equal to the set $\Phi_M(S_n)$ of *M*-decohered states iff $\{H, V_k, V_k^*\}'' = \langle M \rangle$. Any initial state leads to an asymptotic state iff $\{V_k, V_k^*\}'' = \langle M \rangle$, and then

$$S_n \ni \rho_0 \to \rho_\infty := \lim_{t \to \infty} \exp(t\hat{L})(\rho_0) = \Phi_M(\rho_0) := \sum_{m \in \sigma(M)} P_m \rho_0 P_m$$

2. Family of NU, NL, D effective dynamics for M-purification

- family of effective dynamics and a probability distribution on them:
 - family is parametrized by $S_M = \{\mu_{ext} = \sum_{i=1}^n s_i P_i\} \subset S_n$ set of 'external' density matrices on $\langle M \rangle \subset M_n$, convex combinations of spectral projections of M• simplest, i.e. uniform probability distribution on S_M

with respect to the Lebesgue measure in $S_M \subset \mathbb{R}^{n-1} \cap [0,1]^n$

• μ_{ext} -dependent NU, NL, D dynamics on S_M :

$$\frac{d\mu}{dt} = aF(\mu, \mu_{ext}) := a[\mu(\lambda\mu - \mu_{ext}) - \mu \operatorname{Tr} \mu(\lambda\mu - \mu_{ext})], \quad \mu \in S_M \quad (1)$$

• *a* > 0 "evolution strength"

• $\lambda \equiv \lambda(\mu, \mu_{ext}) := \max\{\kappa \in [0, 1] \mid \mu_{ext} - \kappa \mu \ge 0\},\ \mu_{ext} \equiv \sum_i s_i P_i \text{ is the convex combination } \mu_{ext} = \lambda \mu + \sum_{i \neq j} \lambda_i P_i$ Figure: n = 3, j = 2

2. Family of NU, NL, D effective dynamics for M-purification

- family of effective dynamics and a probability distribution on them:
 - family is parametrized by $S_M = \{\mu_{ext} = \sum_{i=1}^n s_i P_i\} \subset S_n$ set of 'external' density matrices on $\langle M \rangle \subset M_n$, convex combinations of spectral projections of M• simplest, i.e. uniform probability distribution on S_M

with respect to the Lebesgue measure in $S_M \subset \mathbb{R}^{n-1} \cap [0,1]^n$

• μ_{ext} -dependent NU, NL, D dynamics on S_M :

$$\frac{d\mu}{dt} = aF(\mu, \mu_{ext}) := a[\mu(\lambda\mu - \mu_{ext}) - \mu \operatorname{Tr} \mu(\lambda\mu - \mu_{ext})], \quad \mu \in S_{M}$$
(1)

• *a* > 0 "evolution strength"

• $\lambda \equiv \lambda(\mu, \mu_{ext}) := \max\{\kappa \in [0, 1] | \mu_{ext} - \kappa \mu \ge 0\},\$ $\mu_{ext} \equiv \sum_i s_i P_i \text{ is the convex combination } \mu_{ext} = \lambda \mu + \sum_{i \neq j} \lambda_i P_i$ Figure: n = 3, j = 2

2. Family of NU, NL, D effective dynamics for M-purification

- family of effective dynamics and a probability distribution on them:
 - family is parametrized by $S_M = \{\mu_{ext} = \sum_{i=1}^n s_i P_i\} \subset S_n$ set of 'external' density matrices on $\langle M \rangle \subset M_n$, convex combinations of spectral projections of M• simplest, i.e. uniform probability distribution on S_M

with respect to the Lebesgue measure in $\mathcal{S}_M \subset \mathbb{R}^{n-1} \cap [0,1]^n$

• μ_{ext} -dependent NU, NL, D dynamics on S_M :

$$\frac{d\mu}{dt} = aF(\mu, \mu_{ext}) := a[\mu(\lambda\mu - \mu_{ext}) - \mu \operatorname{Tr} \mu(\lambda\mu - \mu_{ext})], \quad \mu \in S_{M}$$
(1)

- a > 0 "evolution strength"
- $\lambda \equiv \lambda(\mu, \mu_{ext}) := \max\{\kappa \in [0, 1] \mid \mu_{ext} \kappa \mu \ge 0\},\ \mu_{ext} \equiv \sum_i s_i P_i \text{ is the convex combination } \mu_{ext} = \lambda \mu + \sum_{i \neq j} \lambda_i P_i$ Figure: n = 3, j = 2

P. Vecsernvés

2. Asymptotic fixed-point structure of the NU, NL,D effective dynamics

- Theorem (PV) on the asymptotic fixed-point structure of the dynamics (1) If $\mu_{ext} \in S_M$ is chosen uniformly wrt the Lebesgue measure on S_M then the asymptotic state $\mu_{\infty} := \lim_{t \to \infty} \mu(t)$ of the dynamics (1) on S_M with initial state $\mu_0 = \sum_{i=1}^n p_i P_i$ is equal to P_i with probability $p_i = \operatorname{Tr} \mu_0 P_i$.
- short illustration / explanation: the attractor region of P_i contains the open subsimplex Int S_i(μ₀) ⊂ S_M =: {μ_{ext}}
 ⇒ uniform choice of μ_{ext} within S_M leads to

relative frequency of outcome $(\mu_{\infty} = P_i) = \frac{V(S_i(\mu_0))}{V(S_M)} = p_i = \text{Tr } \mu_0 P_i$

2. Asymptotic fixed-point structure of the NU, NL,D effective dynamics

- Theorem (PV) on the asymptotic fixed-point structure of the dynamics (1) If $\mu_{ext} \in S_M$ is chosen uniformly wrt the Lebesgue measure on S_M then the asymptotic state $\mu_{\infty} := \lim_{t \to \infty} \mu(t)$ of the dynamics (1) on S_M with initial state $\mu_0 = \sum_{i=1}^n p_i P_i$ is equal to P_i with probability $p_i = \operatorname{Tr} \mu_0 P_i$.
- short illustration / explanation: the attractor region of *P_i* contains the open subsimplex Int *S_i*(μ₀) ⊂ *S_M* =: {μ_{ext}}
 ⇒ uniform choice of μ_{ext} within *S_M* leads to

relative frequency of outcome $(\mu_{\infty} = P_i) = \frac{V(S_i(\mu_0))}{V(S_M)} = p_i = \text{Tr } \mu_0 P_i$

- one can try one-step dynamics: $d\rho/dt = \hat{L}(\rho) + aF(\Phi_M(\rho), \mu_{ext})$ \Rightarrow idealized two-step dynamics arises as $a \rightarrow 0$, when *M*-decoherence is much faster than *M*-purification
- experimental verification of the dynamical nature of measurements needs slow 'measuring process' and quick switch on/off possibility of the measuring device without disturbing the state of the measured system: instead of the outcome distribution at $t = \infty$ from t = 0 data, i.e. given $\mu_0 = \sum p_i P_i$ and uniform μ_{ext} in $S_M \mapsto \mu_\infty = P_i$ with probability p_i a switch-off and immediate switch-on at intermediate time $0 < T < \infty$ $\Rightarrow t = T$ 'final' distribution of μ_T as initial distribution with new (uniformly chosen) μ_{ext} may lead to a *T*-dependent asymptotic distibution of μ_∞ , which is numerically calculable from the given NL, D effective dynamics
- in case of unbounded or continuous spectra, M ∉ M_n (position operator) write σ(M) ⊆ ℝ as a partition of finitely many spectral intervals ⇒ spectral interval projections lead to f.d. algebra approximations
- in case of joint measurements of commuting operators (position coordinate operators in R^d) use products of commuting spectral (interval) projections

4 D K 4 B K 4 B K

- one can try one-step dynamics: $d\rho/dt = \hat{L}(\rho) + aF(\Phi_M(\rho), \mu_{ext})$ \Rightarrow idealized two-step dynamics arises as $a \to 0$, when *M*-decoherence is much faster than *M*-purification
- experimental verification of the dynamical nature of measurements needs slow 'measuring process' and quick switch on/off possibility of the measuring device without disturbing the state of the measured system: instead of the outcome distribution at *t* = ∞ from *t* = 0 data, i.e. given μ₀ = ∑ *p_iP_i* and uniform μ_{ext} in *S_M* → μ_∞ = *P_i* with probability *p_i* a switch-off and immediate switch-on at intermediate time 0 < *T* < ∞ ⇒ *t* = *T* 'final' distribution of μ_T as initial distribution with new (uniformly chosen) μ_{ext} may lead to a *T*-dependent asymptotic distibution of μ_∞, which is numerically calculable from the given NL, D effective dynamics
- in case of unbounded or continuous spectra, M ∉ M_n (position operator) write σ(M) ⊆ ℝ as a partition of finitely many spectral intervals ⇒ spectral interval projections lead to f.d. algebra approximations
- in case of joint measurements of commuting operators (position coordinate operators in R^d) use products of commuting spectral (interval) projections

- one can try one-step dynamics: $d\rho/dt = \hat{L}(\rho) + aF(\Phi_M(\rho), \mu_{ext})$ \Rightarrow idealized two-step dynamics arises as $a \to 0$, when *M*-decoherence is much faster than *M*-purification
- experimental verification of the dynamical nature of measurements needs slow 'measuring process' and quick switch on/off possibility of the measuring device without disturbing the state of the measured system: instead of the outcome distribution at *t* = ∞ from *t* = 0 data, i.e. given μ₀ = ∑ *p_iP_i* and uniform μ_{ext} in *S_M* → μ_∞ = *P_i* with probability *p_i* a switch-off and immediate switch-on at intermediate time 0 < *T* < ∞ ⇒ *t* = *T* 'final' distribution of μ_T as initial distribution with new (uniformly chosen) μ_{ext} may lead to a *T*-dependent asymptotic distibution of μ_∞, which is numerically calculable from the given NL, D effective dynamics
- in case of unbounded or continuous spectra, M ∉ M_n (position operator) write σ(M) ⊆ ℝ as a partition of finitely many spectral intervals ⇒ spectral interval projections lead to f.d. algebra approximations
- in case of joint measurements of commuting operators (position coordinate operators in R^d) use products of commuting spectral (interval) projections

- one can try one-step dynamics: $d\rho/dt = \hat{L}(\rho) + aF(\Phi_M(\rho), \mu_{ext})$ \Rightarrow idealized two-step dynamics arises as $a \to 0$, when *M*-decoherence is much faster than *M*-purification
- experimental verification of the dynamical nature of measurements needs slow 'measuring process' and quick switch on/off possibility of the measuring device without disturbing the state of the measured system: instead of the outcome distribution at *t* = ∞ from *t* = 0 data, i.e. given μ₀ = ∑ *p_iP_i* and uniform μ_{ext} in *S_M* → μ_∞ = *P_i* with probability *p_i* a switch-off and immediate switch-on at intermediate time 0 < *T* < ∞ ⇒ *t* = *T* 'final' distribution of μ_T as initial distribution with new (uniformly chosen) μ_{ext} may lead to a *T*-dependent asymptotic distibution of μ_∞, which is numerically calculable from the given NL, D effective dynamics
- in case of unbounded or continuous spectra, M ∉ M_n (position operator) write σ(M) ⊆ ℝ as a partition of finitely many spectral intervals ⇒ spectral interval projections lead to f.d. algebra approximations
- in case of joint measurements of commuting operators (position coordinate operators in R^d) use products of commuting spectral (interval) projections

References

- G. Lindblad: On the generators of quantum dynamical semigroups Commun.Math.Phys. 48, 119–130 (1976)
- E.H. Lieb and R. Seiringer: Proof of Bose–Einstein condensation for dilute trapped gases
 Phys.Rev.Lett. 88, 170409 (2002)
- L. Erdős, B. Schlein and H-T. Yau: Rigorous derivation of the Gross-Pitaevskii Equation Phys.Rev.Lett. 98, 040404 (2007)
- B. Baumgartner and H. Narnhofer: Analysis of quantum semigroups with GKS-Lindblad generators: II. General
 - J. Phys.A: Math. Theor. 41, 395303 (2008)
- S. Weinberg: What happens in a measurement Phys.Rev. A93, 032154 (2016)
- T. Geszti: Quantum mechanics and the opium of linearity Talk given at the *Physics meets philosophy* workshop on *Quantum states and linearity*, Budapest (2016) http://physicsmeetsphilosophy.tumblr.com/page/3
- P. Vecsernyés: An effective toy model in M_n(C) for selective measurements in quantum mechanics
 J.Math.Phys. 58, 102109 (2017)

"God does not play dice with the universe." A. Einstein

< ロ > < 同 > < 回 > < 回 > < 回 > <

크