イロメ イ部メ イ君メ イ君メー

Particle interpretation in interacting systems

A. Jakovác

ELTE, Dept. of Atomic Physics

Contents

[Introduction](#page-2-0)

- **[Motivations](#page-3-0)**
- [The Holy Grail of particle physics](#page-5-0)
- 2 [Definitions of particle](#page-9-0)
	- **[Classical mechanics](#page-10-0)**
	- [Quantum mechanics](#page-12-0)

3 [Interacting systems](#page-20-0)

- [Asymptotic states and quasiparticles](#page-21-0)
- [Zero mass excitations and dephasing at](#page-29-0) $T = 0$
- [Melting of bound states](#page-37-0)

[Conclusions](#page-50-0)

 \Rightarrow

Outlines

[Introduction](#page-2-0)

- **•** [Motivations](#page-3-0)
- [The Holy Grail of particle physics](#page-5-0)
- [Definitions of particle](#page-9-0)
	- [Classical mechanics](#page-10-0)
	- [Quantum mechanics](#page-12-0)

[Interacting systems](#page-20-0)

- [Asymptotic states and quasiparticles](#page-21-0)
- [Zero mass excitations and dephasing at](#page-29-0) $T = 0$
- [Melting of bound states](#page-37-0)

 \Rightarrow

4 0 3

[Motivations](#page-3-0)

Outlines

[Introduction](#page-2-0)

• [Motivations](#page-3-0)

• [The Holy Grail of particle physics](#page-5-0)

[Definitions of particle](#page-9-0)

- [Classical mechanics](#page-10-0)
- [Quantum mechanics](#page-12-0)

[Interacting systems](#page-20-0)

- [Asymptotic states and quasiparticles](#page-21-0)
- [Zero mass excitations and dephasing at](#page-29-0) $T = 0$
- [Melting of bound states](#page-37-0)

 \rightarrow

Ξ $\,$

 \leftarrow \Box

- in Monte Carlo simulations particles are identified by $e^{-m\tau}$ imaginary time dependence \Rightarrow E-level of the Hamiltonian How can it be temperature dependent? How can it melt?
- fields acquire wave fct. renormalization with $Z \leq 1$ Are they "whole" degrees of freedom? And if $Z \rightarrow 0$?
- When are two particles indistinguishable?
- In a crossover everything changes continuously How can the number of dof change continuously?
- Goal: answer to these questions $\&$ go beyond...

Box 11

[The Holy Grail of particle physics](#page-5-0)

Outlines

[Introduction](#page-2-0)

- **[Motivations](#page-3-0)**
- [The Holy Grail of particle physics](#page-5-0)
- [Definitions of particle](#page-9-0)
	- [Classical mechanics](#page-10-0)
	- [Quantum mechanics](#page-12-0)

[Interacting systems](#page-20-0)

- [Asymptotic states and quasiparticles](#page-21-0)
- [Zero mass excitations and dephasing at](#page-29-0) $T = 0$
- [Melting of bound states](#page-37-0)

 \Rightarrow

Ξ \mathbf{p}

4 0 3

[The Holy Grail of particle physics](#page-6-0)

The QCD phase structure

Present day particle physics experiments:

CERN LHC, BNL RHIC, Fermilab Tevatron: hadron-hadron colliders

QCD at finite temperature/chemical potential?

(Sz. Borsanyi et al, JHEP 1011 (2010) 077)

- \bullet at low T : Hadron Resonance Gas (HRG)
- \bullet SB limit at high T : 8 gluon $+$ 2 relativistic quark dof
- • continuous phase transition (crossover): what are the dof here?

 000000

0000000000

[Introduction](#page-2-0) [Definitions of particle](#page-9-0) [Interacting systems](#page-20-0) [Conclusions](#page-50-0)

イロメ イ押メ イヨメ イヨメー

[The Holy Grail of particle physics](#page-7-0)

Why is so difficult to treat QCD equation of state?

- **o** strong interactions
- **•** gauge symmetry
- zero mass particles
- **a** bound states at low T
- crossover near $T_c = 157 \,\mathrm{MeV}$ hadrons at high T phase? – observable quarks at low T phase? – not observable
- fluid near phase transition region
	- fluidity measure $\eta/s \approx \hbar k/(4\pi)$ (viscosity at own scale): small ⇒ very "good" liquid
	- no oscillating density-correlation \Rightarrow not ordinary liquid (more like supercritical water, permanent fluid)

 00000

[Introduction](#page-2-0) [Definitions of particle](#page-9-0) [Interacting systems](#page-20-0) [Conclusions](#page-50-0)

大洋国大洋港大洋港市

[The Holy Grail of particle physics](#page-8-0)

Is it a particle system?

- NO? strong interactions may reorganize the system fully, no more and less important components: no hope of analytic treatment
- YES? with the usual perturbative dof improved calculation of interactions (eg. HTL, high loop DR, Polyakov loop dynamics, Boltzmann eq. with 2-3 scattering, etc.)
- YES? but the elementary dof are not the usual particles (eg. $N = 4$ SYM, 5D AdS gravity duality; 2PI dressed quasiparticles)
	- \Rightarrow a perturbative approach is possible...

So the main question is:

What are the elementary degrees of freedom of an interacting particle system?

Outlines

[Introduction](#page-2-0)

- **[Motivations](#page-3-0)**
- [The Holy Grail of particle physics](#page-5-0)
- 2 [Definitions of particle](#page-9-0)
	- **[Classical mechanics](#page-10-0)**
	- [Quantum mechanics](#page-12-0)

[Interacting systems](#page-20-0)

- [Asymptotic states and quasiparticles](#page-21-0)
- [Zero mass excitations and dephasing at](#page-29-0) $T = 0$
- [Melting of bound states](#page-37-0)

 \Rightarrow

Ξ

4 0 3

 $\leftarrow \Xi \rightarrow$

Ξ ×

 \leftarrow \Box

[Classical mechanics](#page-10-0)

Outlines

[Introduction](#page-2-0)

- **[Motivations](#page-3-0)**
- [The Holy Grail of particle physics](#page-5-0)
- 2 [Definitions of particle](#page-9-0)
	- **[Classical mechanics](#page-10-0)**
	- [Quantum mechanics](#page-12-0)

[Interacting systems](#page-20-0)

- [Asymptotic states and quasiparticles](#page-21-0)
- [Zero mass excitations and dephasing at](#page-29-0) $T = 0$
- [Melting of bound states](#page-37-0)

By subdividing matter we arrive at point masses \Rightarrow particles

Experience: dynamics of matter can be understood from the dynamics of elementary parts

- \bullet One particle state: point in the phase space P
- Multiparticle state $\in P^N$, N is the particle number

evolution (dynamics):

- classical mechanics, Newton's law
- Boltzmann equation \rightarrow equilibrium
- fails under a scale (quantum effects)
- **o** other failure: yields non-extensive thermodynamics

 \Rightarrow indistinguishability of particles, Gibbs paradox

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm \end{array} \right.$

[Quantum mechanics](#page-12-0)

Outlines

[Introduction](#page-2-0)

- **[Motivations](#page-3-0)**
- [The Holy Grail of particle physics](#page-5-0)

2 [Definitions of particle](#page-9-0)

- [Classical mechanics](#page-10-0)
- [Quantum mechanics](#page-12-0)

[Interacting systems](#page-20-0)

- [Asymptotic states and quasiparticles](#page-21-0)
- [Zero mass excitations and dephasing at](#page-29-0) $T = 0$
- [Melting of bound states](#page-37-0)

 \mathbf{p} \rightarrow

Ξ

 \leftarrow \Box

- State of a system: Hilbert space
- **•** transformations, measurements: operators
- Identification/definition of particle is not always possible in general. . .

Possible methods:

- particle number operator, Fok space
- **•** spectral defintion and time evolution
- **•** dynamical definition: longest living exciations (linear response theory)
- OR linear response theory at $T > 0$
- statistical/thermodynamical definition

Experience: in certain (idealized, free) systems these definitions yield the same concept

⇒ particle

 \Rightarrow

イロン イ部ン イ君ン イ君ン

[Quantum mechanics](#page-14-0)

Particle number operator

Conserved quantities:

- **•** generator of time evolution: \hat{H} Hamiltonian
- Q mutually commuting conserved operator set (eg. $Q = {\hat{\mathbf{p}}}, J^2, J_z, \dots$ } and $[Q_i, \hat{H}] = 0$)
	- \Rightarrow common eigensystem (quantum channel, SSC)
- In free systems $\exists \hat{N} \in Q$ number operator
	- Ground state (vacuum): $N = 0$ sector
	- \bullet def. Particle: state in $N = 1$ SSC. ∃ 1-particle QM, wave function, Schrödinger equation.
	- Multiparticle states: Fok space construction

 000000

 0000000000

[Introduction](#page-2-0) [Definitions of particle](#page-9-0) [Interacting systems](#page-20-0) [Conclusions](#page-50-0)

イロン イ部ン イ君ン イ君ン

[Quantum mechanics](#page-15-0)

Field operators, spectral function

We can introduce some concepts

- annihilation operator $\hat{a}_p : N + 1$ part $\rightarrow N$ part
- field operator: $\hat{\Psi}(\mathbf{p},t) \sim \mathcal{N}_p a_p$ $\hat{\Psi}(x)|0\rangle \sim$ particle state at position x
- ${\sf spectral\ function}\colon\thinspace\varrho(t)=\langle0|[\hat{\Psi}(t),\hat{\Psi}^{\dagger}(0)]_{\pm}|0\rangle\mid_{\pm\text{ fermionic/bosonic)}}.$ calculate it in Fourier space (include complete system):

 $\varrho(\omega > 0) = \sum 2\pi \delta(\omega - E_n) |\langle 0|\Psi|n\rangle|^2$

n ⇒ useful tool to obtain spectral density

the same can be repeated for SSC Q:

- $\hat{A}_{Q} \quad \Rightarrow \quad \Psi_{Q} \quad \Rightarrow \quad \varrho_{Q}(t) = \langle 0 | [\hat{\Psi}_{Q}(t), \hat{\Psi}_{Q}^{\dagger}(0)]_{\pm} | 0 \rangle$
- $\bullet \Psi_{\Omega} \sim \Psi^N$, but there can be multiple choices
- \circ $\rho_{\mathcal{O}}(t)$ yields the energy spectrum at quantum numbers Q

[Quantum mechanics](#page-16-0)

Spectrum and time dependence at $N = 1$

- one single energy level at E_p (dispersion relation)
- time dependence of a 1-particle is unique $\sim e^{-iE_pt}$

 $4.11 \times$

 \Rightarrow

[Introduction](#page-2-0) [Definitions of particle](#page-9-0) [Interacting systems](#page-20-0) [Conclusions](#page-50-0) 000000 0000000000000000000000000000 [Quantum mechanics](#page-17-0)

Spectrum and time dependence at $N = 2$

- lots of energy levels (continuum at infinite volume) $|{\bf q},-{\bf q}\rangle$ states have zero complete momentum
- in relativistic systems $\varrho(\omega) \sim \Theta(\omega-2m)\sqrt{1-\frac{4m^2}{\omega^2}}$
- time dependence is not unique: $\sum_{n} c_n e^{-iE_n t} \quad \Rightarrow \quad \text{need}$ infinite initial conditions, or history
- \Rightarrow not a particle-like spectrum!

重

 \rightarrow \Rightarrow \rightarrow

 000000

[Introduction](#page-2-0) [Definitions of particle](#page-9-0) [Interacting systems](#page-20-0) [Conclusions](#page-50-0)

[Quantum mechanics](#page-18-0)

Linear response theory

Create a state at $t = 0$ and observe field operator:

 $iG^{(Q)}_{ret}(t) = \Theta(t) \langle [\hat{\Psi}_{Q}(t), \hat{\Psi}_{Q}^{\dagger}(0)]_{\pm} \rangle = \Theta(t) \varrho_{Q}(t)$

- for $t > 0$ equivalent to the spectral function
- can be defined at finite temperature $\big(\langle .\rangle \to \frac{1}{Z} \operatorname{Tr} \mathsf{e}^{-\beta \hat{H}}\big)$

For a 1-particle state: $iG_{ret}(\mathbf{p},t)\sim e^{-iE_pt}$ for all temperatures \Rightarrow the same unique time dependence

(2-particle state: for large times $\varrho_\mathcal{A}(t) \sim t^{-3/2}$; different at finite $\mathcal{T})$

K ロ X K @ X K 할 X K 할 X 및 및 X Q Q Q

 000000

[Introduction](#page-2-0) [Definitions of particle](#page-9-0) [Interacting systems](#page-20-0) [Conclusions](#page-50-0)

[Quantum mechanics](#page-19-0)

Thermodynamics

Partition function $Z = e^{-\beta V f} = \text{Tr} e^{-\beta \hat{H}} = \sum_n e^{-\beta E_n}$.

In free systems $N = 1$ sector determines the complete thermodynamics

$$
f = \sum_{Q} (\mp) \, \mathcal{T} \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \, \ln(1 \pm e^{-\beta(E_{Q,\rho} - \mu_Q)})
$$

• all particles yield equal weight contribution

 \Rightarrow particles \equiv thermodynamical dof

- only the energy levels count (not the way we measure them)
- in relativistic systems at $T \rightarrow \infty$ Steffan-Boltzmann limit

$$
P_{SB}=\frac{\pi^2}{90}\left(N_b+\frac{7}{8}N_f\right).
$$

 $N_{b/f}$ are the number of bosonic/fermionic particle species.

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → K) Q Q Q

Outlines

[Introduction](#page-2-0)

- **[Motivations](#page-3-0)**
- [The Holy Grail of particle physics](#page-5-0)
- [Definitions of particle](#page-9-0)
	- [Classical mechanics](#page-10-0)
	- [Quantum mechanics](#page-12-0)

3 [Interacting systems](#page-20-0)

- [Asymptotic states and quasiparticles](#page-21-0)
- [Zero mass excitations and dephasing at](#page-29-0) $T = 0$
- [Melting of bound states](#page-37-0)

 \Rightarrow

[Asymptotic states and quasiparticles](#page-21-0)

Outlines

[Introduction](#page-2-0)

- **[Motivations](#page-3-0)**
- [The Holy Grail of particle physics](#page-5-0)
- [Definitions of particle](#page-9-0)
	- [Classical mechanics](#page-10-0)
	- [Quantum mechanics](#page-12-0)

3 [Interacting systems](#page-20-0)

- [Asymptotic states and quasiparticles](#page-21-0)
- [Zero mass excitations and dephasing at](#page-29-0) $T = 0$
- [Melting of bound states](#page-37-0)

 $\leftarrow \Xi \rightarrow$

重 $\,$

Kロト K型ト

4 重 ト 4重 ト

[Asymptotic states and quasiparticles](#page-22-0)

- **o** particle number
- **•** spectral defintion and time evolution
- dynamical definition: longest living exciations (linear response theory)
- \bullet OR linear response theory at $T>0$
- statistical/thermodynamical definition

Gave the same particle concept for free systems They yield different concepts for interacting systems!

- particle number \hat{N} is not conserved \bm{X}
- **•** spectral defintion and time evolution
- dynamical definition: longest living exciations (linear response theory)
- \bullet OR linear response theory at $T>0$
- statistical/thermodynamical definition

Gave the same particle concept for free systems They yield different concepts for interacting systems! 000000

[Introduction](#page-2-0) [Definitions of particle](#page-9-0) [Interacting systems](#page-20-0) [Conclusions](#page-50-0)

[Asymptotic states and quasiparticles](#page-24-0)

Spectral defintion and asymptotic states

spectra of different N sectors mix together

- multiple energy levels
- \bullet time dependence is not unique, depends on the history \bigtimes

Solution I: asymptotic particle state

- at $T = 0$: may \exists discrete E-level
- linear response for long times: $Ze^{-iEt} + Ct^{-3/2}e^{-iE_{thr}t}$ long time behaviour unique $\sqrt{}$ Z is wave function renormalization (sum rule)

[Asymptotic states and quasiparticles](#page-25-0)

- particle number \hat{N} is not conserved \bm{X}
- spectral defintion, longest living exciations: at zero temperature – asymptotic states
- \bullet linear response theory at massless case or at $T > 0$
- statistical/thermodynamical definition

Usually there is no clear distinction between particle and continuum states, if

- zero mass excitation (no gap)
- **unstable particle particle and decay products mix**
- \bullet $\tau > 0$ environment: scattering on thermal bath particles

 $\rightarrow \equiv$

メタトメ きょくぼう

[Asymptotic states and quasiparticles](#page-26-0)

Mixing particle and continuum states: quasiparticles

 \bullet no unique time dependence λ • no asymptotic states \times

(AJ, PRD76 (2007) 125004 [hep-ph/0612268])

- linear response: $\rho(t) = Ze^{-iEt-\gamma t} + f_{bckg}(t) = pole + cut$
- for large Z and small γ : complex pole dominates long time dependence $\sqrt{ }$ \Rightarrow quasiparticle
	- not a single energy level: collective, multiparticle state!
	- $T = 0$ and $T \neq 0$ time dependence are different!
		- \Rightarrow environment-dependent quasiparticle definition

 000000

0000000000

[Introduction](#page-2-0) [Definitions of particle](#page-9-0) [Interacting systems](#page-20-0) [Conclusions](#page-50-0)

[Asymptotic states and quasiparticles](#page-27-0)

Mathematical treatment of quasiparticles

Can quasiparticles be standalone degrees of freedom? From several point of view they are particle-like:

- \bullet quasiparticles dominate long time dependence \checkmark
- \bullet particle-like contribution to free energy (Beth, Uhlenbeck) \checkmark $\delta Z\sim \int_0^\infty \frac{d\omega}{\pi}\frac{\partial \delta}{\delta \omega} {\rm e}^{-\beta\omega}\sim {\rm e}^{-\beta E} \quad$: $\delta_\ell(\varepsilon)$ phase shift jumps π -t at poles (Landau, Lifsitz V.; R.F Dashen, R. Rajaraman, PRD10 (1974), 694.)

We should write up a Lagrangian:

$$
\mathcal{L} = \sum_{Q} \Psi_Q^{\dagger} \mathcal{K}_Q(i\partial) \Psi_Q + \mathcal{L}_{int}
$$

BUT: exponential damping with local kernel $\hat{H} \rightarrow \hat{H} - i\gamma \Rightarrow$ loss of unitarity! χ

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q Q

 $(1 - 4)$ $(1 -$

[Asymptotic states and quasiparticles](#page-28-0)

Solution

We have to take into account the complete spectrum!

(Ward, Luttinger, Phys.Rev. 118 (1960) 1417; G. Baym, Phys. Rev. 127 (1962) 1391; Cornwall Jackiw,

Tomboulis, Phys.Rev. D10 (1974) 2428-2445;J. Berges and J. Cox, Phys. Lett. B 517 (2001) 369)

In Φ-derivable (or 2PI) approach we solve self-consistently the SD equations: $G^{-1} = G_0^{-1} - \Sigma(G)$.

Corollary

- quasiparticles are collective excitations
- **•** no local representation of quasiparticles

[Zero mass excitations and dephasing at](#page-29-0) $T = 0$

Outlines

[Introduction](#page-2-0)

- **[Motivations](#page-3-0)**
- [The Holy Grail of particle physics](#page-5-0)
- [Definitions of particle](#page-9-0)
	- [Classical mechanics](#page-10-0)
	- [Quantum mechanics](#page-12-0)

3 [Interacting systems](#page-20-0)

- [Asymptotic states and quasiparticles](#page-21-0)
- [Zero mass excitations and dephasing at](#page-29-0) $T = 0$
- [Melting of bound states](#page-37-0)

 \Rightarrow

Ξ ×

 \leftarrow \Box

[Zero mass excitations and dephasing at](#page-30-0) $T = 0$

The Bloch-Nordsieck model

Folklore: particle-like states are always quasiparticles. . . Real spectrum in case of zero mass excitations?

By chance, ∃ 3+1D solvable model: Bloch-Nordsieck model

(F. Bloch and A. Nordsieck, Phys. Rev. 52 (1937) 54.) $\mathcal{L}=-\frac{1}{4}$ $\frac{1}{4}F_{\mu\nu}F^{\mu\nu}+\Psi^{\dagger}(i\mu_{\mu}D^{\mu}-m)\Psi, \qquad iD_{\mu}=i\partial_{\mu}-eA_{\mu}, F_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}.$

(e fermion charge, $\alpha=e^2/(4\pi)$ fine structure constant, m fermion mass)

- 1-component QED $(\gamma^{\mu} \rightarrow u^{\mu})$
- spin-statistics theorem \Rightarrow fermion is an incoming (hard) test charge
- \bullet deep IR regime of real QED (H. A. Weldon, Phys. Rev. D 44, 3955 (1991).)

K □ ▶ K @ ▶ K 콜 X K 콜 X - 콜 - 외 Q Q @

Solution at $T = 0$

o functional methods (F. Bloch and A. Nordsieck, Phys. Rev. 52 (1937) 54.; N.N. Bogoliubov and D.V. Shirkov)

• Fradkin representation

(H.M. Fried, Greens Functions and Ordered Exponentials (Cambridge University Press, 2002))

• Schwinger-Dyson equations & Ward-identities (A. I. Alekseev, V. A.

Baikov and E. E. Boos, Theor. Math. Phys. 54, 253 (1983) [Teor. Mat. Fiz. 54, 388 (1983)]; AJ and P.

Mati, Phys. Rev. D 85 (2012) 085006.)

At $T > 0$

- **o** long time evolution (J. -P. Blaizot and E. Iancu, Phys. Rev. D 55 (1997) 973.)
- complete spectrum (AJ and P. Mati, arXiv:1301.1803)

K ロ > K @ > K 할 > K 할 > → 할 → 9 Q @

1-loop perturbation theory for fermion propagator $(\textit{u} \cdot \textit{p} = \textit{u}_{\mu}\textit{p}^{\mu})$

$$
\mathcal{G}(p) = \frac{1}{u \cdot p - m - \Sigma(p)} = \frac{1}{u \cdot p - m} \frac{1}{1 + \frac{\alpha}{\pi} \ln \frac{m - u \cdot p}{\mu}}.
$$

 \Rightarrow divergent near $u \cdot p \rightarrow m \Rightarrow$ resummation needed

• exact SD equation (operator EoM) in Feynman gauge:

$$
\Sigma(p) = -ie^2 \int \frac{d^4k}{(2\pi)^4} G(k) \mathcal{G}(p-k) u_\mu \Gamma^\mu(k; p-k, p).
$$

Ward identities (consequence of current conservation)

 $k_{\mu} \Gamma^{\mu}(k; p - k, p) = \mathcal{G}^{-1}(p) - \mathcal{G}^{-1}(p - k).$

In this model the WI can be solved, because $\Gamma^{\mu} = u^{\mu} \Gamma!$ The equations form a closed set, analytic solution is possible.

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → K) Q Q Q

[Zero mass excitations and dephasing at](#page-33-0) $T = 0$

The exact solution reads: $\varrho(p) = \frac{Z\Theta(u\cdot p - m)}{(u\cdot p - m)^{1+\alpha/\pi}}$.

exponentiation of perturbative result.

Not fully satisfying solution. . .

- gauge dependent
- not normalizable: $\int d\omega \varrho(\omega)$ divergent must be compensated with $Z = 0 \Rightarrow 0 \cdot \infty$ type problem!
- real time dependence? dimensional analysis: $\int d\omega e^{-i\omega t} \varrho(\omega) \rightarrow e^{-imt} t^{\alpha/\pi}$ growing correlation in time?? unitarity??

for physical answer: regularization \Rightarrow finite temperature

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → K) Q Q Q

[Introduction](#page-2-0) [Definitions of particle](#page-9-0) [Interacting systems](#page-20-0) [Conclusions](#page-50-0) [Zero mass excitations and dephasing at](#page-34-0) $T = 0$

Finite temperature results

- SD & WI written up in real time formalism
- Analytic solution exists for $u_{\mu} = (u, 0, 0, 0)$ (standing fermion), in real time: $\varrho(t)\sim (\sinh\pi\,Tt)^{\alpha/\pi}$
- inverse Fourier transform exists for pure imaginary α
	- \Rightarrow perform FT, then analytic continuation!

Wigner RCP, May 17. 2013 34 / 51

Fourier transform of the physically sensible result: $\varrho(t) = e^{-imt}\bar{\varrho}(t)$

for long times $\mathcal{T} t \gg 1$: $\sim e^{-\alpha_{\mathsf{eff}}(u)\mathcal{T} t}$ quasiparticle behaviour

- **•** for short times $T_t \ll 1$: $\sim 1 Z_t^{\alpha/\pi}$ not quasiparticle-like!
- at $T=0$ $\varrho(t)\sim e^{-imt}$ ⇒ no zero temperature dephasing!
- in real QED probably $\varrho(t)\sim(\textsf{C}_1+\textsf{C}_2t^{-3/2})e^{-imt}$

 \Rightarrow

 000000

[Introduction](#page-2-0) [Definitions of particle](#page-9-0) [Interacting systems](#page-20-0) [Conclusions](#page-50-0)

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm \end{array} \right.$

[Zero mass excitations and dephasing at](#page-36-0) $T = 0$

Misleading quasiparticle picture

As $T \rightarrow 0$ the damping becomes non-quasiparticle-like! If we (uncorrectly) assume quasiparticle behaviour, we can have false conclusions! eg.:

$$
-\frac{\varrho'(t)}{\varrho(t)} = \begin{cases} \gamma, & \text{if } \varrho \sim e^{-\gamma t} \\ Zt^{\beta-1}, & \text{if } \varrho \sim 1 - Zt^{\beta} \end{cases}
$$

 $⇒$ one may identify $\gamma = Z t^{\beta - 1}$ dephasing time!

- in fact dephasing time is meaningless at $T = 0!$
- dephasing in solid state physics \Rightarrow same phenomenon?

(P. Mohanty, E.M.Q. Jariwala, R.A. Webb, Phys. Rev. Lett. 78, 3366 (1997), [arXiv: cond-mat/9710095])

lesson: only the complete spectrum yields reliable time dependence!

[Melting of bound states](#page-37-0)

Outlines

[Introduction](#page-2-0)

- **[Motivations](#page-3-0)**
- [The Holy Grail of particle physics](#page-5-0)
- [Definitions of particle](#page-9-0)
	- [Classical mechanics](#page-10-0)
	- [Quantum mechanics](#page-12-0)

3 [Interacting systems](#page-20-0)

- [Asymptotic states and quasiparticles](#page-21-0)
- [Zero mass excitations and dephasing at](#page-29-0) $T = 0$
- [Melting of bound states](#page-37-0)

 $\leftarrow \Xi \rightarrow$

Ξ \mathbf{p}

 \leftarrow \Box

[Melting of bound states](#page-38-0)

Bound states

Folklore: quasiparticles represent (thermodynamical) dof. . . What is the case with bound states? In case of attractive interactions, there can appear states below the

free 2-particle thresholds \Rightarrow bound states

For example: $e^- + p^+$, $\mathbf{p} = 0$, $J^2 = 0 \Rightarrow$ s-states of H-atom

- in Coulomb approximation energy levels \Rightarrow particle, $E_n = \frac{E_0}{n^2}$
- in QED: ns states decay for $n > 1$

→ 長 →

 \Rightarrow finite width $\gamma \sim \frac{\gamma_0}{n^3}$

• quasiparticles \Rightarrow experimentally observable

thermodynamics? $\sum_n e^{-\beta E_0/n^2}$ is diverg[ent](#page-37-0)[!](#page-39-0)

Wigner RCP, May 17, 2013 38 / 51

Box 11

[Melting of bound states](#page-39-0)

Overlapping quasiparticle states

In reality at $T > 0$ or finite density: increased width

- **o** finite collisional lifetime
- finite density \Rightarrow maximal orbital size
- \Rightarrow ns states for large n overlap

But a quasiparticle is collective multiparticle state: how to count common energy levels?

 \Rightarrow

 000000

0000000000

[Introduction](#page-2-0) [Definitions of particle](#page-9-0) [Interacting systems](#page-20-0) [Conclusions](#page-50-0)

 $(1 - 4)$ $(1 -$

[Melting of bound states](#page-40-0)

Thermodynamics from the complete spectrum

Build thermodynamics on the s-channel spectrum! Technically:

- → quadratic theory $\mathcal{L} \sim \Psi \mathcal{K} \Psi \Rightarrow$ energy-momentum tensor
- \rightarrow energy density $\varepsilon = \frac{1}{Z} \operatorname{Tr} \mathsf{e}^{-\beta \hat{H}} \hat{\mathcal{T}}_{00}$
- \rightarrow free energy, pressure from thermodynamical relations Result:

$$
\varepsilon = \int \frac{d^4p}{(2\pi)^4} \Theta(p_0) \mathcal{H}(p) n(p_0) \varrho(p)
$$

where

$$
\mathcal{H}(\rho) = \rho_0 \frac{\partial \mathcal{K}}{\partial \rho_0} - \mathcal{K}, \qquad \mathcal{K}^{-1}(\rho) = G(\rho) = \mathcal{P} \int \frac{d\omega}{2\pi} \frac{\varrho(\omega, \mathbf{p})}{\rho_0 - \omega + i\varepsilon}.
$$

- classical mechanical analogy: K quadratic kernel "Lagrangian" with $p_0 \sim \dot{q} \Rightarrow H$ energy.
- \bullet ε does not depend on the normalization of ρ .

[Melting of bound states](#page-41-0)

Thermodynamics

$$
m_1 = 1, m_2 = 2
$$

- i.) $\gamma = 0$: 2 Dirac-deltas
- ii.) two independent $\gamma = 0.2$ peaks
- iii.) overlapping equal $\gamma = 0.2$ width peaks

$$
\bullet\text{ iv.) one } m=1.2\text{ and }\gamma=0.2\text{ peak}
$$

(AJ. Phys.Rev. D86 (2012) 085007)

thermodynamics of overlapping peaks: if we had only one particle!

 \Rightarrow reduction of thermodynamical dof

Gibbs-paradox is resolved: continuous, analytic reduction of number of dof!

 \Rightarrow

[Melting of bound states](#page-42-0)

Coulomb spectrum of QCD

QCD bound state dynamics cannot be solved. . .

experimental evidence: exponentially rising energy level density

(W. Broniowski, W. Florkowski and L. Y. .Glozman, Phys. Rev. D 70, 117503 (2004) [hep-ph/0407290].)

Hagedorn-spectrum: $\varrho_{\mathit{hadr}}(m) \sim (m^2 + m_0^2)^a e^{-m/T_{\mathit{hi}}}$ several fits (also $a = 0$) possible

[Melting of bound states](#page-43-0)

Hagedorn thermodynamics

- MC data from BMW collaboration (Sz. Borsanyi et al, JHEP 1011 (2010) 077)
- \bullet fit: 1500 hadronic resonances. $m_0 = 120 \,\text{MeV}$, $T_H = 241 \,\text{MeV}$ and $a = 0$.
- very good fit to MC data
- for infinitely many resonances: divergent at $T > T_H$
- overestimation of pressure above $\approx 200 \,\mathrm{MeV}$.

 000000

[Introduction](#page-2-0) [Definitions of particle](#page-9-0) [Interacting systems](#page-20-0) [Conclusions](#page-50-0)

イロメ イ押メ イヨメ イヨメ

[Melting of bound states](#page-44-0)

Reduction of thermodynamical dof

The reason is similar than in the previous case: full spectral function \Rightarrow overlapping quasiparticle peaks We consider three possible mechanisms

- **•** quasiparticle peaks overlap with each other
- a quasiparticle peak overlap with the continuum
- a quasiparticle peak has vanishing wave function renormalization constant.

[Melting of bound states](#page-45-0)

Overlapping peaks

Hagedorn-distributed energy levels (35 peaks)

- spectra are shifted for better visibility
- already at small width the upper peaks melt into a continuum ⇒ reduce pressure

 \leftarrow \Box

Þ

[Melting of bound states](#page-46-0)

Broadening peak at continuum

A bound state $m = 1$ quasiparticle & 2-particle threshold $m_{thr} = 2$

Dynamical vs. thermodynamical dof

- at $\gamma = 0.14$: quasiparticle peak is clearly detectable in the spectrum
- it does not contribute to the pressure
- in MC: hadronic states are dynamically observable even at $T \gg T_c!$ (AJ., P. Petreczky, K. Petrov, A. Velytsky, PRD75 (2007) 014506)
- at large γ : no quasiparticle peak!

 $\leftarrow \equiv$

[Introduction](#page-2-0) [Definitions of particle](#page-9-0) [Interacting systems](#page-20-0) [Conclusions](#page-50-0) [Melting of bound states](#page-47-0)

Shrinking quasiparticle wave function renormalization

A bound state quasiparticle below a 2-particle threshold

- quasiparticle is observable in dynamics (linear response), but does not contribute to thermodynamics
- for all ζ we find a peak in the spectrum \Rightarrow chemical reaction

 \Rightarrow

[Melting of bound states](#page-48-0)

Consequences to Hagedorn spectrum

- reduction factor of thermodynamical dof: $N_{\text{eff}}(T) = \frac{\rho(T,\gamma)}{\rho(T,\gamma=0)}$
	- \Rightarrow slightly temperature dependent
- fit: Gaussian $e^{-\frac{\gamma^2}{2\gamma_0^2}}$, $\gamma_0=0.04$
- realistic $\gamma(T)$ not known for all hadrons; usually strongly nonlinear T -dependence (C.A. Dominguez, et.al., JHEP 0708 (2007) 040) e.g. $\gamma(\mathcal{T}) \sim \mathcal{T}^3$

 \Rightarrow

[Melting of bound states](#page-49-0)

Pressure of the hadronic matter

Complete pressure: $P_{tot} = P_{hadr} + P_{QGP}$ With increasing temperature:

- partial pressure of hadrons decreases, $P_{\text{hadr}} < P_{\text{tot}}$.
- QGP pressure increases
- • hadronic thermodynamics up to 1.5-2 T_c ?

Outlines

[Introduction](#page-2-0)

- **[Motivations](#page-3-0)**
- [The Holy Grail of particle physics](#page-5-0)
- [Definitions of particle](#page-9-0)
	- [Classical mechanics](#page-10-0)
	- [Quantum mechanics](#page-12-0)

[Interacting systems](#page-20-0)

- [Asymptotic states and quasiparticles](#page-21-0)
- [Zero mass excitations and dephasing at](#page-29-0) $T = 0$
- [Melting of bound states](#page-37-0)

[Conclusions](#page-50-0)

 $\rightarrow \equiv$

÷ $\,$

 \leftarrow \Box

Particle definition becomes dubious in interacting systems

- naive particle definitions are different in case of interaction
- asymptotic states only at zero temperature
- **•** quasiparticles only for well separated, large peaks

There are cases, when the naive particle-like interpretation is not correct

- \bullet zero mass excitations \Rightarrow no quasiparticles at $T \rightarrow 0$
- **•** quasiparticles are not standalone degrees of freedom, they can disappear (melt)

Facit

The real generalization of particle concept is the treatment of the complete spectrum.

 $\rightarrow \equiv$