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Motivations

in Monte Carlo simulations particles are identified by e−mτ

imaginary time dependence ⇒ E-level of the Hamiltonian
How can it be temperature dependent? How can it melt?

fields acquire wave fct. renormalization with Z ≤ 1

Are they “whole” degrees of freedom? And if Z → 0?

When are two particles indistinguishable?

In a crossover everything changes continuously
How can the number of dof change continuously?

Goal: answer to these questions & go beyond. . .

Wigner RCP, May 17. 2013 5 / 51
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The Holy Grail of particle physics

The QCD phase structure

Present day particle physics experiments:
CERN LHC, BNL RHIC, Fermilab Tevatron: hadron-hadron colliders

QCD at finite temperature/chemical potential?

(Sz. Borsanyi et al, JHEP 1011 (2010) 077)

at low T : Hadron Resonance Gas
(HRG)

SB limit at high T :
8 gluon + 2 relativistic quark dof

continuous phase transition
(crossover): what are the dof here?

Wigner RCP, May 17. 2013 7 / 51
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The Holy Grail of particle physics

Why is so difficult to treat QCD equation of state?

strong interactions

gauge symmetry

zero mass particles

bound states at low T

crossover near Tc = 157MeV
hadrons at high T phase? – observable
quarks at low T phase? – not observable

fluid near phase transition region

fluidity measure η/s ≈ ~k/(4π) (viscosity at own scale): small
⇒ very “good” liquid
no oscillating density-correlation ⇒ not ordinary liquid
(more like supercritical water, permanent fluid)

Wigner RCP, May 17. 2013 8 / 51
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The Holy Grail of particle physics

Is it a particle system?

NO? – strong interactions may reorganize the system fully, no
more and less important components: no hope of analytic
treatment

YES? with the usual perturbative dof – improved calculation
of interactions (eg. HTL, high loop DR, Polyakov loop dynamics,

Boltzmann eq. with 2-3 scattering, etc.)

YES? but the elementary dof are not the usual particles (eg.

N = 4 SYM, 5D AdS gravity duality; 2PI dressed quasiparticles)

⇒ a perturbative approach is possible. . .

So the main question is:

What are the elementary degrees of freedom of an
interacting particle system?

Wigner RCP, May 17. 2013 9 / 51
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Classical mechanics

By subdividing matter we arrive at point masses ⇒ particles

Experience: dynamics of matter can be understood from the
dynamics of elementary parts

One particle state: point in the phase space P

Multiparticle state ∈ PN , N is the particle number

evolution (dynamics):

classical mechanics, Newton’s law

Boltzmann equation → equilibrium

fails under a scale (quantum effects)

other failure: yields non-extensive thermodynamics
⇒ indistinguishability of particles, Gibbs paradox
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Quantum mechanics

State of a system: Hilbert space

transformations, measurements: operators

Identification/definition of particle is not always possible in
general. . .

Possible methods:

particle number operator, Fok space

spectral defintion and time evolution

dynamical definition: longest living exciations (linear response
theory)

OR linear response theory at T > 0

statistical/thermodynamical definition

Experience: in certain (idealized, free) systems these definitions
yield the same concept
⇒ particle

Wigner RCP, May 17. 2013 14 / 51
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Quantum mechanics

Particle number operator

Conserved quantities:

generator of time evolution: Ĥ Hamiltonian

Q mutually commuting conserved operator set (eg.
Q = {p̂, J2, Jz , . . . } and [Qi , Ĥ] = 0)
⇒ common eigensystem (quantum channel, SSC)

In free systems ∃ N̂ ∈ Q number operator

Ground state (vacuum): N = 0 sector

def.: Particle: state in N = 1 SSC
∃ 1-particle QM, wave function, Schrödinger equation.

Multiparticle states: Fok space construction

Wigner RCP, May 17. 2013 15 / 51
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Quantum mechanics

Field operators, spectral function

We can introduce some concepts

annihilation operator âp : N + 1 part→ N part

field operator: Ψ̂(p, t) ∼ Npap

Ψ̂(x) |0〉 ∼ particle state at position x

spectral function: %(t) = 〈0|[Ψ̂(t), Ψ̂†(0)]±|0〉 (± fermionic/bosonic).

calculate it in Fourier space (include complete system):

%(ω > 0) =
∑

n

2πδ(ω − En)| 〈0|Ψ|n〉 |2

⇒ useful tool to obtain spectral density

the same can be repeated for SSC Q:

ÂQ ⇒ ΨQ ⇒ %Q(t) = 〈0|[Ψ̂Q(t), Ψ̂†Q(0)]±|0〉
ΨQ ∼ ΨN , but there can be multiple choices

%Q(t) yields the energy spectrum at quantum numbers Q

Wigner RCP, May 17. 2013 16 / 51
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Quantum mechanics

Spectrum and time dependence at N = 1

N = 1 sector, fixed p̂,Q (bound states are internal dof, see later)
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one single energy level at Ep (dispersion relation)

time dependence of a 1-particle is unique ∼ e−iEpt
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Quantum mechanics

Spectrum and time dependence at N = 2

N = 2 sector, for example with p = 0, fixed other Q
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lots of energy levels (continuum at infinite volume)
|q,−q〉 states have zero complete momentum

in relativistic systems %(ω) ∼ Θ(ω − 2m)
√

1− 4m2

ω2

time dependence is not unique:
∑

n cne
−iEnt ⇒ need

infinite initial conditions, or history

⇒ not a particle-like spectrum!

Wigner RCP, May 17. 2013 18 / 51



Introduction Definitions of particle Interacting systems Conclusions

Quantum mechanics

Linear response theory

Create a state at t = 0 and observe field operator:

iG
(Q)
ret (t) = Θ(t)〈[Ψ̂Q(t), Ψ̂†Q(0)]±〉 = Θ(t)%Q(t)

for t > 0 equivalent to the spectral function

can be defined at finite temperature (〈.〉 → 1
Z Tr e−βĤ)

For a 1-particle state: iGret(p, t) ∼ e−iEpt for all temperatures
⇒ the same unique time dependence

(2-particle state: for large times %A(t) ∼ t−3/2; different at finite T )

Wigner RCP, May 17. 2013 19 / 51
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Quantum mechanics

Thermodynamics

Partition function Z = e−βVf = Tr e−βĤ =
∑

n e
−βEn .

In free systems N = 1 sector determines the complete
thermodynamics

f =
∑

Q

(∓)T

∫
d3p

(2π)3
ln(1± e−β(EQ,p−µQ ))

all particles yield equal weight contribution
⇒ particles ≡ thermodynamical dof

only the energy levels count (not the way we measure them)

in relativistic systems at T →∞ Steffan-Boltzmann limit

PSB =
π2

90

(
Nb +

7

8
Nf

)
.

Nb/f are the number of bosonic/fermionic particle species.
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Asymptotic states and quasiparticles

particle number

– N̂ is not conserved %

spectral defintion and time evolution

dynamical definition: longest living exciations (linear response
theory)

OR linear response theory at T > 0

statistical/thermodynamical definition

Gave the same particle concept for free systems
They yield different concepts for interacting systems!

Wigner RCP, May 17. 2013 23 / 51
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Asymptotic states and quasiparticles

Spectral defintion and asymptotic states

spectra of different N sectors mix together
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multiple energy levels

time dependence is not unique, depends on the history %

Solution I: asymptotic particle state

at T = 0: may ∃ discrete E-level

linear response for long times: Ze−iEt + Ct−3/2e−iEthr t

long time behaviour unique !
Z is wave function renormalization (sum rule)
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Asymptotic states and quasiparticles

particle number – N̂ is not conserved %

spectral defintion, longest living exciations:at zero
temperature – asymptotic states

linear response theory at massless case or at T > 0

statistical/thermodynamical definition

Usually there is no clear distinction between particle and
continuum states, if

zero mass excitation (no gap)

unstable particle particle and decay products mix

T > 0 environment: scattering on thermal bath particles

Wigner RCP, May 17. 2013 25 / 51
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Asymptotic states and quasiparticles

Mixing particle and continuum states: quasiparticles
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p=0.2443m

(AJ, PRD76 (2007) 125004 [hep-ph/0612268])

no unique time dependence %

no asymptotic states %

linear response: %(t) = Ze−iEt−γt + fbckg (t) = pole + cut

for large Z and small γ: complex pole dominates long time

dependence ! ⇒ quasiparticle

not a single energy level: collective, multiparticle state!
T = 0 and T 6= 0 time dependence are different!
⇒ environment-dependent quasiparticle definition
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Asymptotic states and quasiparticles

Mathematical treatment of quasiparticles

Can quasiparticles be standalone degrees of freedom? From several
point of view they are particle-like:

quasiparticles dominate long time dependence !

particle-like contribution to free energy (Beth, Uhlenbeck) !
δZ ∼

∫∞
0

dω
π
∂δ
δω e
−βω ∼ e−βE :δ`(ε) phase shift jumps π-t at poles

(Landau, Lifsitz V.; R.F Dashen, R. Rajaraman, PRD10 (1974), 694.)

We should write up a Lagrangian:

L =
∑

Q

Ψ†QKQ(i∂)ΨQ + Lint

BUT: exponential damping with local kernel
Ĥ → Ĥ − iγ ⇒ loss of unitarity! %

Wigner RCP, May 17. 2013 27 / 51
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Asymptotic states and quasiparticles

Solution

We have to take into account the complete spectrum!

(Ward, Luttinger, Phys.Rev. 118 (1960) 1417; G. Baym, Phys. Rev. 127 (1962) 1391; Cornwall Jackiw,

Tomboulis, Phys.Rev. D10 (1974) 2428-2445;J. Berges and J. Cox, Phys. Lett. B 517 (2001) 369)

In Φ-derivable (or 2PI) approach we solve self-consistently the SD
equations: G−1 = G−1

0 − Σ(G ).

Corollary

quasiparticles are collective excitations

no local representation of quasiparticles

Wigner RCP, May 17. 2013 28 / 51
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Zero mass excitations and dephasing at T = 0

The Bloch-Nordsieck model

Folklore: particle-like states are always quasiparticles. . .
Real spectrum in case of zero mass excitations?

By chance, ∃ 3+1D solvable model: Bloch-Nordsieck model
(F. Bloch and A. Nordsieck, Phys. Rev. 52 (1937) 54.)

L = −1

4
FµνF

µν + Ψ†(iuµD
µ −m)Ψ, iDµ=i∂µ−eAµ, Fµν=∂µAν−∂νAµ.

(e fermion charge, α = e2/(4π) fine structure constant, m fermion mass)

1-component QED (γµ → uµ)

spin-statistics theorem ⇒ fermion is an incoming (hard)
test charge

deep IR regime of real QED (H. A. Weldon, Phys. Rev. D 44, 3955 (1991).)

Wigner RCP, May 17. 2013 30 / 51
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Zero mass excitations and dephasing at T = 0

Solution

Solution at T = 0

functional methods (F. Bloch and A. Nordsieck, Phys. Rev. 52 (1937) 54.; N.N. Bogoliubov

and D.V. Shirkov)

Fradkin representation
(H.M. Fried, Greens Functions and Ordered Exponentials (Cambridge University Press, 2002))

Schwinger-Dyson equations & Ward-identities (A. I. Alekseev, V. A.

Baikov and E. E. Boos, Theor. Math. Phys. 54, 253 (1983) [Teor. Mat. Fiz. 54, 388 (1983)]; AJ and P.

Mati, Phys. Rev. D 85 (2012) 085006.)

At T > 0

long time evolution (J. -P. Blaizot and E. Iancu, Phys. Rev. D 55 (1997) 973.)

complete spectrum (AJ and P. Mati, arXiv:1301.1803)
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Zero mass excitations and dephasing at T = 0

Solution at T = 0

1-loop perturbation theory for fermion propagator (u · p = uµp
µ)

G(p) =
1

u · p −m − Σ(p)
=

1

u · p −m

1

1 +
α

π
ln

m − u · p
µ

.

⇒ divergent near u · p → m ⇒ resummation needed

exact SD equation (operator EoM) in Feynman gauge:

Σ(p) = −ie2

∫
d4k

(2π)4
G (k)G(p − k)uµΓµ(k ; p − k, p).

Ward identities (consequence of current conservation)

kµΓµ(k; p − k , p) = G−1(p)− G−1(p − k).

In this model the WI can be solved, because Γµ = uµΓ! The
equations form a closed set, analytic solution is possible.

Wigner RCP, May 17. 2013 32 / 51
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Zero mass excitations and dephasing at T = 0

The exact solution reads: %(p) =
ZΘ(u · p −m)

(u · p −m)1+α/π
.

⇒ exponentiation of perturbative result.

Not fully satisfying solution. . .

gauge dependent

not normalizable:
∫
dω%(ω) divergent

must be compensated with Z = 0 ⇒ 0 · ∞ type problem!

real time dependence?
dimensional analysis:

∫
dωe−iωt%(ω)→ e−imttα/π

growing correlation in time?? unitarity??

for physical answer: regularization ⇒ finite temperature

Wigner RCP, May 17. 2013 33 / 51



Introduction Definitions of particle Interacting systems Conclusions

Zero mass excitations and dephasing at T = 0

Finite temperature results

SD & WI written up in real time formalism

Analytic solution exists for uµ = (u, 0, 0, 0) (standing
fermion), in real time: %(t) ∼ (sinhπTt)α/π

inverse Fourier transform exists for pure imaginary α
⇒ perform FT, then analytic continuation!

%(x) =
Nαβ sinα ex/2

cosh x − cosα

∣∣∣Γ(1 +
α

2π
+ i

x

2π

)∣∣∣−2

,
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function of x = β(u · p −m)

(x = βw)

α→ 0 and T → 0 limits OK.

normalizable, Z ∼ Tα/π

for other u: numerical convolution
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Zero mass excitations and dephasing at T = 0

Real time dependence

Fourier transform of the physically sensible result: %(t) = e−imt %̄(t)
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for long times Tt � 1: ∼ e−αeff (u)Tt quasiparticle behaviour

for short times Tt � 1: ∼ 1− Ztα/π not quasiparticle-like!

at T = 0 %(t) ∼ e−imt ⇒ no zero temperature dephasing!

in real QED probably %(t) ∼ (C1 + C2t
−3/2)e−imt
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Zero mass excitations and dephasing at T = 0

Misleading quasiparticle picture

As T → 0 the damping becomes non-quasiparticle-like!
If we (uncorrectly) assume quasiparticle behaviour, we can have
false conclusions! eg.:

−%
′(t)

%(t)
=

{
γ, if % ∼ e−γt

Ztβ−1, if % ∼ 1− Ztβ

⇒ one may identify γ = Ztβ−1 dephasing time!

in fact dephasing time is meaningless at T = 0!

dephasing in solid state physics ⇒ same phenomenon?
(P. Mohanty, E.M.Q. Jariwala, R.A. Webb, Phys. Rev. Lett. 78, 3366 (1997), [arXiv: cond-mat/9710095])

lesson: only the complete spectrum yields reliable time dependence!
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Melting of bound states

Bound states

Folklore: quasiparticles represent (thermodynamical) dof. . .
What is the case with bound states?
In case of attractive interactions, there can appear states below the
free 2-particle thresholds ⇒ bound states
For example: e− + p+, p = 0, J2 = 0 ⇒ s-states of H-atom
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in Coulomb approximation energy
levels ⇒ particle, En = E0

n2

in QED: ns states decay for n > 1
⇒ finite width γ ∼ γ0

n3

quasiparticles ⇒ experimentally observable

thermodynamics?
∑

n e
−βE0/n2

is divergent!
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Melting of bound states

Overlapping quasiparticle states

In reality at T > 0 or finite density: increased width

finite collisional lifetime

finite density ⇒ maximal orbital size

⇒ ns states for large n overlap
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But a quasiparticle is collective multiparticle state:
how to count common energy levels?
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Melting of bound states

Thermodynamics from the complete spectrum

Build thermodynamics on the s-channel spectrum!
Technically:
→ quadratic theory L ∼ ΨKΨ ⇒ energy-momentum tensor

→ energy density ε = 1
Z Tr e−βĤ T̂00

→ free energy, pressure from thermodynamical relations

Result:

ε =

∫
d4p

(2π)4
Θ(p0)H(p)n(p0)%(p)

where

H(p) = p0
∂K
∂p0
−K, K−1(p) = G (p) = P

∫
dω

2π

%(ω,p)

p0 − ω + iε
.

classical mechanical analogy: K quadratic kernel
”Lagrangian” with p0 ∼ q̇ ⇒ H energy.

ε does not depend on the normalization of %.
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Melting of bound states

Thermodynamics
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(AJ. Phys.Rev. D86 (2012) 085007)

m1 = 1, m2 = 2

i.) γ = 0: 2 Dirac-deltas

ii.) two independent γ = 0.2 peaks

iii.) overlapping equal γ = 0.2 width
peaks

iv.) one m = 1.2 and γ = 0.2 peak

thermodynamics of overlapping peaks: if we had only one particle!
⇒ reduction of thermodynamical dof

Gibbs-paradox is resolved: continuous, analytic reduction of
number of dof!
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Melting of bound states

Coulomb spectrum of QCD

QCD bound state dynamics cannot be solved. . .
experimental evidence: exponentially rising energy level density

( W. Broniowski, W. Florkowski and L. Y. .Glozman,

Phys. Rev. D 70, 117503 (2004) [hep-ph/0407290].)

Hagedorn-spectrum:
%hadr (m) ∼ (m2 + m2

0)ae−m/TH

several fits (also a = 0) possible
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Melting of bound states

Hagedorn thermodynamics
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MC data from BMW collaboration
(Sz. Borsanyi et al, JHEP 1011 (2010) 077)

fit: 1500 hadronic resonances,
m0 = 120MeV, TH = 241MeV and
a = 0.

very good fit to MC data

for infinitely many resonances: divergent at T > TH

overestimation of pressure above ≈ 200MeV.
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Melting of bound states

Reduction of thermodynamical dof

The reason is similar than in the previous case: full spectral
function ⇒ overlapping quasiparticle peaks
We consider three possible mechanisms

quasiparticle peaks overlap with each other

a quasiparticle peak overlap with the continuum

a quasiparticle peak has vanishing wave function
renormalization constant.
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Melting of bound states

Overlapping peaks

Hagedorn-distributed energy levels (35 peaks)
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spectra are shifted for better visibility

already at small width the upper peaks melt into a continuum
⇒ reduce pressure
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Melting of bound states

Broadening peak at continuum

A bound state m = 1 quasiparticle & 2-particle threshold mthr = 2
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Dynamical vs. thermodynamical dof

at γ = 0.14: quasiparticle peak is clearly detectable in the
spectrum

it does not contribute to the pressure

in MC: hadronic states are dynamically observable even at
T � Tc ! (AJ., P. Petreczky, K. Petrov, A. Velytsky, PRD75 (2007) 014506)

at large γ: no quasiparticle peak!

Wigner RCP, May 17. 2013 46 / 51



Introduction Definitions of particle Interacting systems Conclusions

Melting of bound states

Shrinking quasiparticle wave function renormalization

A bound state quasiparticle below a 2-particle threshold
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quasiparticle is observable in dynamics (linear response), but
does not contribute to thermodynamics

for all ζ we find a peak in the spectrum ⇒ chemical
reaction
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Melting of bound states

Consequences to Hagedorn spectrum
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p(T ,γ=0)

⇒ slightly temperature dependent

fit: Gaussian e
− γ2

2γ2
0 , γ0 = 0.04

realistic γ(T ) not known for all hadrons; usually strongly
nonlinear T -dependence (C.A. Dominguez, et.al., JHEP 0708 (2007) 040)

e.g. γ(T ) ∼ T 3
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Melting of bound states

Pressure of the hadronic matter
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Complete pressure: Ptot = Phadr + PQGP

With increasing temperature:

partial pressure of hadrons decreases, Phadr < Ptot .

QGP pressure increases

hadronic thermodynamics up to 1.5-2Tc ?
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Particle definition becomes dubious in interacting systems

naive particle definitions are different in case of interaction

asymptotic states only at zero temperature

quasiparticles only for well separated, large peaks

There are cases, when the naive particle-like interpretation is not
correct

zero mass excitations ⇒ no quasiparticles at T → 0

quasiparticles are not standalone degrees of freedom, they can
disappear (melt)

Facit

The real generalization of particle concept is the treatment of the
complete spectrum.
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