Particle interpretation in interacting systems

A. Jakovác

ELTE, Dept. of Atomic Physics

Interacting systems Conclusions

Contents

Introduction

- Motivations
- The Holy Grail of particle physics
- 2 Definitions of particle
 - Classical mechanics
 - Quantum mechanics

Interacting systems

- Asymptotic states and quasiparticles
- \bullet Zero mass excitations and dephasing at $\mathcal{T}=0$
- Melting of bound states

4 Conclusions

Interacting systems Conclusions

Outlines

Introduction

- Motivations
- The Holy Grail of particle physics
- 2 Definitions of particle
 - Classical mechanics
 - Quantum mechanics

Interacting systems

- Asymptotic states and quasiparticles
- Zero mass excitations and dephasing at T = 0
- Melting of bound states

4 Conclusions

∃⇒

Definitions of particle

nteracting systems Conclusions

Motivations

Outlines

Introduction

Motivations

- The Holy Grail of particle physics
- 2 Definitions of particle
 - Classical mechanics
 - Quantum mechanics

Interacting systems

- Asymptotic states and quasiparticles
- Zero mass excitations and dephasing at T = 0
- Melting of bound states

4 Conclusions

Introduction	Definitions of particle	Interacting systems	Conclusions
00000	000000000	000000000000000000000000000000000000000	0
Motivations			

- in Monte Carlo simulations particles are identified by e^{-mτ} imaginary time dependence ⇒ E-level of the Hamiltonian How can it be temperature dependent? How can it melt?
- fields acquire wave fct. renormalization with $Z \le 1$ Are they "whole" degrees of freedom? And if $Z \rightarrow 0$?
- When are two particles indistinguishable?
- In a crossover everything changes continuously How can the number of dof change continuously?

Goal: answer to these questions & go beyond...

nteracting systems Conclusions

The Holy Grail of particle physics

Outlines

Introduction

- Motivations
- The Holy Grail of particle physics
- 2 Definitions of particle
 - Classical mechanics
 - Quantum mechanics
- Interacting systems
 - Asymptotic states and quasiparticles
 - Zero mass excitations and dephasing at T = 0
 - Melting of bound states

4 Conclusions

Definitions of particle

Interacting systems Conclusions

The Holy Grail of particle physics

The QCD phase structure

Present day particle physics experiments:

CERN LHC, BNL RHIC, Fermilab Tevatron: hadron-hadron colliders

QCD at finite temperature/chemical potential?

(Sz. Borsanyi et al, JHEP 1011 (2010) 077)

- at low *T*: Hadron Resonance Gas (HRG)
- SB limit at high T:
 8 gluon + 2 relativistic quark dof
- continuous phase transition (crossover): what are the dof here?

Definitions of particle

Interacting systems Conclusions

(日)

- ∢ ⊒ →

The Holy Grail of particle physics

Why is so difficult to treat QCD equation of state?

- strong interactions
- gauge symmetry
- zero mass particles
- bound states at low T
- crossover near $T_c = 157 \text{ MeV}$ hadrons at high T phase? – observable quarks at low T phase? – not observable
- fluid near phase transition region
 - fluidity measure $\eta/s \approx \hbar k/(4\pi)$ (viscosity at own scale): small \Rightarrow very "good" liquid
 - no oscillating density-correlation ⇒ not ordinary liquid (more like supercritical water, permanent fluid)

Interacting systems Conclusion

The Holy Grail of particle physics

Is it a particle system?

- NO? strong interactions may reorganize the system fully, no more and less important components: no hope of analytic treatment
- YES? with the usual perturbative dof improved calculation of interactions (eg. HTL, high loop DR, Polyakov loop dynamics, Boltzmann eq. with 2-3 scattering, etc.)
- YES? but the elementary dof are not the usual particles (eg. N = 4 SYM, 5D AdS gravity duality; 2PI dressed quasiparticles)
 ⇒ a perturbative approach is possible...

So the main question is:

What are the elementary degrees of freedom of an interacting particle system?

Interacting systems Conclusions

Outlines

Introduction

- Motivations
- The Holy Grail of particle physics
- 2 Definitions of particle
 - Classical mechanics
 - Quantum mechanics

Interacting systems

- Asymptotic states and quasiparticles
- Zero mass excitations and dephasing at T = 0
- Melting of bound states

4 Conclusions

Definitions of particle

nteracting systems Conclusions

Classical mechanics

Outlines

Introduction

- Motivations
- The Holy Grail of particle physics
- 2 Definitions of particle
 - Classical mechanics
 - Quantum mechanics

Interacting systems

- Asymptotic states and quasiparticles
- Zero mass excitations and dephasing at T = 0
- Melting of bound states

4 Conclusions

∃⇒

Classical mechanics

By subdividing matter we arrive at point masses \Rightarrow particles Experience: dynamics of matter can be understood from the dynamics of elementary parts

- One particle state: point in the phase space P
- Multiparticle state $\in P^N$, N is the particle number

evolution (dynamics):

- classical mechanics, Newton's law
- Boltzmann equation \rightarrow equilibrium
- fails under a scale (quantum effects)
- other failure: yields non-extensive thermodynamics

 \Rightarrow indistinguishability of particles, Gibbs paradox

- ∢ ⊒ →

Definitions of particle

nteracting systems Conclusions

Quantum mechanics

Outlines

Introduction

- Motivations
- The Holy Grail of particle physics

2 Definitions of particle

- Classical mechanics
- Quantum mechanics

Interacting systems

- Asymptotic states and quasiparticles
- Zero mass excitations and dephasing at T = 0
- Melting of bound states

4 Conclusions

∃⇒

Definitions of particle

Interacting systems Conclusion

Quantum mechanics

- State of a system: Hilbert space
- transformations, measurements: operators
- Identification/definition of particle is not always possible in general...

Possible methods:

- particle number operator, Fok space
- spectral defintion and time evolution
- dynamical definition: longest living excitations (linear response theory)
- OR linear response theory at T > 0
- statistical/thermodynamical definition

Experience: in certain (idealized, free) systems these definitions yield the same concept

 \Rightarrow particle

< ∃ >

Interacting systems Conclusions

Quantum mechanics

Particle number operator

Conserved quantities:

- generator of time evolution: \hat{H} Hamiltonian
- Q mutually commuting conserved operator set (eg. $Q = \{\hat{\mathbf{p}}, J^2, J_z, ...\}$ and $[Q_i, \hat{H}] = 0$)
 - \Rightarrow common eigensystem (quantum channel, SSC)
- In free systems $\exists \hat{N} \in Q$ number operator
 - Ground state (vacuum): N = 0 sector
 - def.: Particle: state in N = 1 SSC
 ∃ 1-particle QM, wave function, Schrödinger equation.
 - Multiparticle states: Fok space construction

Definitions of particle

Interacting systems Conclusions

<ロ> (四) (四) (三) (三) (三) (三)

Quantum mechanics

Field operators, spectral function

We can introduce some concepts

- annihilation operator $\hat{a}_p : N + 1 \text{ part} \rightarrow N \text{ part}$
- field operator: $\hat{\Psi}(\mathbf{p}, t) \sim \mathcal{N}_p a_p$ $\hat{\Psi}(x) |0\rangle \sim$ particle state at position x
- spectral function: $\varrho(t) = \langle 0 | [\hat{\Psi}(t), \hat{\Psi}^{\dagger}(0)]_{\pm} | 0 \rangle$ (\pm fermionic/bosonic). calculate it in Fourier space (include complete system):

 $\varrho(\omega > 0) = \sum_{n} 2\pi \delta(\omega - E_n) |\langle 0|\Psi|n\rangle|^2$

 \Rightarrow useful tool to obtain spectral density

the same can be repeated for SSC Q:

- $\hat{A}_Q \Rightarrow \Psi_Q \Rightarrow \varrho_Q(t) = \langle 0 | [\hat{\Psi}_Q(t), \hat{\Psi}_Q^{\dagger}(0)]_{\pm} | 0 \rangle$
- $\Psi_Q \sim \Psi^N$, but there can be multiple choices
- $\varrho_Q(t)$ yields the energy spectrum at quantum numbers Q

Definitions of particle

Interacting systems Conclusions

Quantum mechanics

Spectrum and time dependence at N = 1

- one single energy level at E_p (dispersion relation)
- time dependence of a 1-particle is unique $\sim e^{-iE_pt}$

∃⇒

Definitions of particle

Interacting systems Conclusions

Quantum mechanics

Spectrum and time dependence at N = 2

N = 2 sector, for example with $\mathbf{p} = 0$, fixed other Q

- lots of energy levels (continuum at infinite volume)
 |q, -q⟩ states have zero complete momentum
- in relativistic systems $\varrho(\omega) \sim \Theta(\omega-2m)\sqrt{1-rac{4m^2}{\omega^2}}$
- time dependence is not unique: $\sum_{n} c_{n} e^{-iE_{n}t} \Rightarrow$ need infinite initial conditions, or history
- ⇒ not a particle-like spectrum!

.≣⇒

Interacting systems Conclusions

<ロ> (四) (四) (三) (三) (三)

Quantum mechanics

Linear response theory

Create a state at t = 0 and observe field operator:

 $iG^{(Q)}_{ret}(t) = \Theta(t) \langle [\hat{\Psi}_Q(t), \hat{\Psi}^{\dagger}_Q(0)]_{\pm}
angle = \Theta(t) \varrho_Q(t)$

- for t > 0 equivalent to the spectral function
- can be defined at finite temperature $(\langle . \rangle \rightarrow \frac{1}{7} \operatorname{Tr} e^{-\beta \hat{H}})$
- For a 1-particle state: $iG_{ret}(\mathbf{p}, t) \sim e^{-iE_{p}t}$ for all temperatures \Rightarrow the same unique time dependence

(2-particle state: for large times $\varrho_A(t) \sim t^{-3/2}$; different at finite T)

Definitions of particle

Interacting systems Conclusions

<ロ> (四) (四) (三) (三) (三) (三)

Quantum mechanics

Thermodynamics

Partition function $Z = e^{-\beta V f} = \text{Tr } e^{-\beta \hat{H}} = \sum_{n} e^{-\beta E_{n}}$.

In free systems N = 1 sector determines the complete thermodynamics

$$f=\sum_Q(\mp)T{\int}rac{d^3\mathbf{p}}{(2\pi)^3}\,\ln(1\pm e^{-eta(E_{Q,
ho}-\mu_Q)})$$

• all particles yield equal weight contribution

 $\Rightarrow \quad \mathsf{particles} \equiv \mathsf{thermodynamical} \ \mathsf{dof}$

- only the energy levels count (not the way we measure them)
- $\bullet\,$ in relativistic systems at $\,\mathcal{T} \to \infty\,$ Steffan-Boltzmann limit

$$P_{SB} = \frac{\pi^2}{90} \left(N_b + \frac{7}{8} N_f \right).$$

 $N_{b/f}$ are the number of bosonic/fermionic particle species.

Interacting systems Conclusions

Outlines

Introduction

- Motivations
- The Holy Grail of particle physics
- 2 Definitions of particle
 - Classical mechanics
 - Quantum mechanics

Interacting systems

- Asymptotic states and quasiparticles
- \bullet Zero mass excitations and dephasing at $\mathcal{T}=0$
- Melting of bound states

4 Conclusions

Interacting systems Conclusions

Asymptotic states and quasiparticles

Outlines

Introduction

- Motivations
- The Holy Grail of particle physics
- 2 Definitions of particle
 - Classical mechanics
 - Quantum mechanics

Interacting systems

- Asymptotic states and quasiparticles
- Zero mass excitations and dephasing at T = 0
- Melting of bound states

4 Conclusions

∃⇒

Asymptotic states and quasiparticles

- particle number
- spectral defintion and time evolution
- dynamical definition: longest living excitations (linear response theory)
- OR linear response theory at T > 0
- statistical/thermodynamical definition

Gave the same particle concept for free systems They yield different concepts for interacting systems!

 $\exists \rightarrow$

Definitions of particle

Interacting systems Conclusions

Asymptotic states and quasiparticles

- particle number \hat{N} is not conserved \times
- spectral definition and time evolution
- dynamical definition: longest living excitations (linear response theory)
- OR linear response theory at T > 0
- statistical/thermodynamical definition

Gave the same particle concept for free systems They yield different concepts for interacting systems!

 $\exists \rightarrow$

Definitions of particle

Interacting systems Conclusion

Asymptotic states and quasiparticles

Spectral defintion and asymptotic states

spectra of different N sectors mix together

- multiple energy levels
- time dependence is not unique, depends on the history 🗡
- Solution I: asymptotic particle state
 - at T = 0: may \exists discrete E-level
 - linear response for long times: $Ze^{-iEt} + Ct^{-3/2}e^{-iE_{thr}t}$ long time behaviour unique \checkmark Z is wave function renormalization (sum rule)

Definitions of particle

Interacting systems Conclusions

(日) (同) (日) (日)

Asymptotic states and quasiparticles

- particle number \hat{N} is not conserved \hat{X}
- spectral definition, longest living excitations:at zero temperature – asymptotic states
- \bullet linear response theory at massless case or at $\mathcal{T}>0$
- statistical/thermodynamical definition

Usually there is no clear distinction between particle and continuum states, if

- zero mass excitation (no gap)
- unstable particle particle and decay products mix
- T > 0 environment: scattering on thermal bath particles

Definitions of particle

Interacting systems Conclusion

/□ ▶ | ∢ □ ▶

Asymptotic states and quasiparticles

Mixing particle and continuum states: quasiparticles

no unique time dependence ×
no asymptotic states ×

(AJ, PRD76 (2007) 125004 [hep-ph/0612268])

- linear response: $\varrho(t) = Ze^{-iEt \gamma t} + f_{bckg}(t) = \text{pole} + \text{cut}$
- for large Z and small γ: complex pole dominates long time dependence ✓ ⇒ quasiparticle
 - not a single energy level: collective, multiparticle state!
 - T = 0 and $T \neq 0$ time dependence are different!
 - $\Rightarrow \quad \text{environment-dependent quasiparticle definition}$

Definitions of particle

Interacting systems Conclusion

Asymptotic states and quasiparticles

Mathematical treatment of quasiparticles

Can quasiparticles be standalone degrees of freedom? From several point of view they are particle-like:

- ullet quasiparticles dominate long time dependence \checkmark
- particle-like contribution to free energy (Beth, Uhlenbeck) $\sqrt{\delta Z} \sim \int_0^\infty \frac{d\omega}{\pi} \frac{\partial \delta}{\delta \omega} e^{-\beta \omega} \sim e^{-\beta E}$: $\delta_\ell(\varepsilon)$ phase shift jumps π -t at poles (Landau, Lifsitz V.; R.F. Dashen, R. Rajaraman, PRD10 (1974), 694.)

We should write up a Lagrangian:

$$\mathcal{L} = \sum_{Q} \Psi_{Q}^{\dagger} \mathcal{K}_{Q} (i\partial) \Psi_{Q} + \mathcal{L}_{int}$$

| damping with local kernel

BUT: exponential damping with local kerne $\hat{H} \rightarrow \hat{H} - i\gamma \implies \text{loss of unitarity!} \checkmark$

ヘロト ヘ戸ト ヘヨト ヘヨト

Asymptotic states and quasiparticles

Solution

We have to take into account the complete spectrum!

(Ward, Luttinger, Phys.Rev. 118 (1960) 1417; G. Baym, Phys. Rev. 127 (1962) 1391; Cornwall Jackiw,

Tomboulis, Phys.Rev. D10 (1974) 2428-2445; J. Berges and J. Cox, Phys. Lett. B 517 (2001) 369)

In Φ -derivable (or 2PI) approach we solve self-consistently the SD equations: $G^{-1} = G_0^{-1} - \Sigma(G)$.

Corollary

- quasiparticles are collective excitations
- no local representation of quasiparticles

Definitions of particle

Interacting systems Conclusions

Zero mass excitations and dephasing at T=0

Outlines

Introduction

- Motivations
- The Holy Grail of particle physics
- 2 Definitions of particle
 - Classical mechanics
 - Quantum mechanics

Interacting systems

- Asymptotic states and quasiparticles
- Zero mass excitations and dephasing at T = 0
- Melting of bound states

4 Conclusions

Definitions of particle

Interacting systems Conclusions

Zero mass excitations and dephasing at T = 0

The Bloch-Nordsieck model

Folklore: particle-like states are always quasiparticles... Real spectrum in case of zero mass excitations?

By chance, \exists 3+1D solvable model: Bloch-Nordsieck model

(F. Bloch and A. Nordsieck, Phys. Rev. 52 (1937) 54.) $\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \Psi^{\dagger} (i u_{\mu} D^{\mu} - m) \Psi, \qquad i D_{\mu} = i \partial_{\mu} - e A_{\mu}, F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}.$

(e fermion charge, $lpha=e^2/(4\pi)$ fine structure constant, m fermion mass)

- 1-component QED $(\gamma^\mu
 ightarrow u^\mu)$
- spin-statistics theorem \Rightarrow fermion is an incoming (hard) test charge
- deep IR regime of real QED (H. A. Weldon, Phys. Rev. D 44, 3955 (1991).)

◆□▶ ▲□▶ ▲目▶ ▲□▶ ▲□▶

Solution at T = 0

• functional methods (F. Bloch and A. Nordsieck, Phys. Rev. 52 (1937) 54.; N.N. Bogoliubov and D.V. Shirkov)

Fradkin representation

(H.M. Fried, Greens Functions and Ordered Exponentials (Cambridge University Press, 2002))

• Schwinger-Dyson equations & Ward-identities (A. I. Alekseev, V. A.

Baikov and E. E. Boos, Theor. Math. Phys. 54, 253 (1983) [Teor. Mat. Fiz. 54, 388 (1983)]; AJ and P.

Mati, Phys. Rev. D 85 (2012) 085006.)

At T > 0

- long time evolution (J. -P. Blaizot and E. Iancu, Phys. Rev. D 55 (1997) 973.)
- complete spectrum (AJ and P. Mati, arXiv:1301.1803)

・ロト ・ 一 ト ・ モト ・ モト

1-loop perturbation theory for fermion propagator $(u \cdot p = u_{\mu}p^{\mu})$

$$\mathcal{G}(p) = \frac{1}{u \cdot p - m - \Sigma(p)} = \frac{1}{u \cdot p - m} \frac{1}{1 + \frac{\alpha}{\pi} \ln \frac{m - u \cdot p}{\mu}}.$$

 \Rightarrow divergent near $u \cdot p \rightarrow m \Rightarrow$ resummation needed

• exact SD equation (operator EoM) in Feynman gauge:

$$\Sigma(p) = -ie^2 \int \frac{d^4k}{(2\pi)^4} G(k) \mathcal{G}(p-k) u_{\mu} \Gamma^{\mu}(k;p-k,p).$$

• Ward identities (consequence of current conservation)

 $k_{\mu}\Gamma^{\mu}(k;p-k,p)=\mathcal{G}^{-1}(p)-\mathcal{G}^{-1}(p-k).$

• In this model the WI can be solved, because $\Gamma^{\mu} = u^{\mu}\Gamma!$ The equations form a closed set, analytic solution is possible.

Definitions of particle

Interacting systems Conclusions

Zero mass excitations and dephasing at T=0

The exact solution reads: $\varrho(p) = \frac{Z\Theta(u \cdot p - m)}{(u \cdot p - m)^{1+\alpha/\pi}}$.

 \Rightarrow exponentiation of perturbative result.

Not fully satisfying solution...

- gauge dependent
- not normalizable: ∫ dωϱ(ω) divergent must be compensated with Z = 0 ⇒ 0 ⋅ ∞ type problem!
- real time dependence? dimensional analysis: $\int d\omega e^{-i\omega t} \varrho(\omega) \rightarrow e^{-imt} t^{\alpha/\pi}$ growing correlation in time?? unitarity??

for physical answer: regularization \Rightarrow finite temperature

Definitions of particle

Interacting systems Conclusions

Zero mass excitations and dephasing at T=0

Finite temperature results

- SD & WI written up in real time formalism
- Analytic solution exists for u_μ = (u, 0, 0, 0) (standing fermion), in real time: ρ(t) ~ (sinh π Tt)^{α/π}
- $\bullet\,$ inverse Fourier transform exists for pure imaginary $\alpha\,$
 - \Rightarrow perform FT, then analytic continuation!

Wigner RCP, May 17. 2013

Fourier transform of the physically sensible result: $\varrho(t) = e^{-imt}\overline{\varrho}(t)$

• for long times $Tt \gg 1$: $\sim e^{-\alpha_{eff}(u)Tt}$ quasiparticle behaviour

- for short times $Tt \ll 1$: $\sim 1 Zt^{\alpha/\pi}$ not quasiparticle-like!
- at $T = 0 \ \varrho(t) \sim e^{-imt} \Rightarrow$ no zero temperature dephasing!
- in real QED probably $\varrho(t) \sim (C_1 + C_2 t^{-3/2})e^{-imt}$

Definitions of particle

Interacting systems Conclusions

・ロト ・聞ト ・ヨト ・ヨト

Zero mass excitations and dephasing at T = 0

Misleading quasiparticle picture

As $T \rightarrow 0$ the damping becomes non-quasiparticle-like! If we (uncorrectly) assume quasiparticle behaviour, we can have false conclusions! eg.:

$$-\frac{\varrho'(t)}{\varrho(t)} = \begin{cases} \gamma, & \text{if } \varrho \sim e^{-\gamma t} \\ Zt^{\beta-1}, & \text{if } \varrho \sim 1 - Zt^{\beta} \end{cases}$$

 \Rightarrow one may identify $\gamma = Zt^{\beta-1}$ dephasing time!

- in fact dephasing time is meaningless at T = 0!
- dephasing in solid state physics \Rightarrow same phenomenon?

(P. Mohanty, E.M.Q. Jariwala, R.A. Webb, Phys. Rev. Lett. 78, 3366 (1997), [arXiv: cond-mat/9710095])

lesson: only the complete spectrum yields reliable time dependence!

Definitions of particle

Interacting systems Conclusions

Melting of bound states

Outlines

Introduction

- Motivations
- The Holy Grail of particle physics
- 2 Definitions of particle
 - Classical mechanics
 - Quantum mechanics

Interacting systems

- Asymptotic states and quasiparticles
- Zero mass excitations and dephasing at T = 0
- Melting of bound states

4 Conclusions

∃⇒

Definitions of particle

Interacting systems Conclusions

Melting of bound states

Bound states

Folklore: quasiparticles represent (thermodynamical) dof... What is the case with bound states? In case of attractive interactions, there can appear states *below* the free 2-particle thresholds \Rightarrow bound states

For example: $e^- + p^+$, $\mathbf{p} = 0$, $J^2 = 0 \implies$ s-states of H-atom

- in Coulomb approximation energy levels \Rightarrow particle, $E_n = \frac{E_0}{n^2}$
- in QED: ns states decay for n > 1
 - \Rightarrow finite width $\gamma \sim \frac{\gamma_0}{n^3}$

ullet quasiparticles \Rightarrow experimentally observable

• thermodynamics? $\sum_{n} e^{-\beta E_0/n^2}$ is divergent!

Wigner RCP, May 17. 2013

≣ > _

Definitions of particle

Interacting systems Conclusions

Melting of bound states

Overlapping quasiparticle states

In reality at T > 0 or finite density: increased width

- finite collisional lifetime
- finite density \Rightarrow maximal orbital size

But a quasiparticle is collective multiparticle state: how to count common energy levels?

Interacting systems Conclusions

Melting of bound states

Thermodynamics from the complete spectrum

Build thermodynamics on the *s*-channel spectrum! Technically:

- $\rightarrow~$ quadratic theory $\mathcal{L}\sim \Psi \mathcal{K} \Psi ~~\Rightarrow~$ energy-momentum tensor
- \rightarrow energy density $\varepsilon = \frac{1}{Z} \operatorname{Tr} e^{-\beta \hat{H}} \hat{T}_{00}$
- \rightarrow free energy, pressure from thermodynamical relations Result:

$$\varepsilon = \int \frac{d^4 p}{(2\pi)^4} \Theta(p_0) \mathcal{H}(p) n(p_0) \varrho(p)$$

where

$$\mathcal{H}(p) = p_0 \frac{\partial \mathcal{K}}{\partial p_0} - \mathcal{K}, \qquad \mathcal{K}^{-1}(p) = G(p) = \mathcal{P} \int \frac{d\omega}{2\pi} \frac{\varrho(\omega, \mathbf{p})}{p_0 - \omega + i\varepsilon}.$$

- classical mechanical analogy: \mathcal{K} quadratic kernel "Lagrangian" with $p_0 \sim \dot{q} \Rightarrow \mathcal{H}$ energy.
- ε does not depend on the normalization of ϱ .

< ≣ >

Definitions of particle

Interacting systems Col

Melting of bound states

Thermodynamics

$$m_1 = 1, m_2 = 2$$

- i.) $\gamma = 0$: 2 Dirac-deltas
- ii.) two independent $\gamma =$ 0.2 peaks
- iii.) overlapping equal $\gamma = 0.2$ width peaks

• iv.) one
$$m=1.2$$
 and $\gamma=0.2$ peak

(AJ. Phys.Rev. D86 (2012) 085007)

thermodynamics of overlapping peaks: if we had only one particle!

 \Rightarrow reduction of thermodynamical dof

Gibbs-paradox is resolved: continuous, analytic reduction of number of dof!

Definitions of particle

Interacting systems Cor

Melting of bound states

Coulomb spectrum of QCD

QCD bound state dynamics cannot be solved...

experimental evidence: exponentially rising energy level density

(W. Broniowski, W. Florkowski and L. Y. .Glozman,
 Phys. Rev. D 70, 117503 (2004) [hep-ph/0407290].)

Hagedorn-spectrum: $\rho_{hadr}(m) \sim (m^2 + m_0^2)^a e^{-m/T_H}$ several fits (also a = 0) possible

Definitions of particle

Interacting systems Co

Melting of bound states

Hagedorn thermodynamics

- MC data from BMW collaboration (Sz. Borsanyi et al, JHEP 1011 (2010) 077)
- fit: 1500 hadronic resonances, $m_0 = 120 \text{ MeV}, T_H = 241 \text{ MeV}$ and a = 0.
- very good fit to MC data
- for infinitely many resonances: divergent at $T > T_H$
- overestimation of pressure above $\approx 200 \,\mathrm{MeV}$.

Definitions of particle

Interacting systems Conclusions

Melting of bound states

Reduction of thermodynamical dof

The reason is similar than in the previous case: full spectral function \Rightarrow overlapping quasiparticle peaks We consider three possible mechanisms

- quasiparticle peaks overlap with each other
- a quasiparticle peak overlap with the continuum
- a quasiparticle peak has vanishing wave function renormalization constant.

Definitions of particle

Interacting systems Con

Melting of bound states

Overlapping peaks

Hagedorn-distributed energy levels (35 peaks)

- spectra are shifted for better visibility
- already at small width the upper peaks melt into a continuum
 ⇒ reduce pressure

Definitions of particle

Interacting systems Conclusions

Melting of bound states

Broadening peak at continuum

A bound state m = 1 quasiparticle & 2-particle threshold $m_{thr} = 2$

Dynamical vs. thermodynamical dof

- at γ = 0.14: quasiparticle peak is clearly detectable in the spectrum
- it does not contribute to the pressure
- in MC: hadronic states are dynamically observable even at $T \gg T_c!$ (AJ., P. Petreczky, K. Petrov, A. Velytsky, PRD75 (2007) 014506)
- at large γ : no quasiparticle peak!

∃⇒

Definitions of particle

Interacting systems Conclusions

Melting of bound states

Shrinking quasiparticle wave function renormalization

A bound state quasiparticle below a 2-particle threshold

- quasiparticle is observable in dynamics (linear response), but does not contribute to thermodynamics
- for all ζ we find a peak in the spectrum \Rightarrow chemical reaction

∃⇒

Definitions of particle

Interacting systems Conclusions

Melting of bound states

Consequences to Hagedorn spectrum

- reduction factor of thermodynamical dof: $N_{eff}(T) = \frac{p(T,\gamma)}{p(T,\gamma=0)}$
 - \Rightarrow slightly temperature dependent
- fit: Gaussian $e^{-\frac{\gamma^2}{2\gamma_0^2}}$, $\gamma_0 = 0.04$
- realistic $\gamma(T)$ not known for all hadrons; usually strongly nonlinear T-dependence (C.A. Dominguez, et.al., JHEP 0708 (2007) 040) e.g. $\gamma(T) \sim T^3$

Definitions of particle

Interacting systems Co

Melting of bound states

Pressure of the hadronic matter

Complete pressure: $P_{tot} = P_{hadr} + P_{QGP}$ With increasing temperature:

- partial pressure of hadrons decreases, $P_{hadr} < P_{tot}$.
- QGP pressure increases
- hadronic thermodynamics up to 1.5-2 T_c ?

Interacting systems Conclusions

Outlines

Introduction

- Motivations
- The Holy Grail of particle physics
- 2 Definitions of particle
 - Classical mechanics
 - Quantum mechanics
- Interacting systems
 - Asymptotic states and quasiparticles
 - Zero mass excitations and dephasing at T = 0
 - Melting of bound states

4 Conclusions

∃⇒

Particle definition becomes dubious in interacting systems

- naive particle definitions are different in case of interaction
- asymptotic states only at zero temperature
- quasiparticles only for well separated, large peaks

There are cases, when the naive particle-like interpretation is not correct

- zero mass excitations \Rightarrow no quasiparticles at $T \rightarrow 0$
- quasiparticles are not standalone degrees of freedom, they can disappear (melt)

Facit

The real generalization of particle concept is the treatment of the complete spectrum.