

Federated Learning on the Edge

Árpád Berta, Gábor Danner, István Hegedűs, Márk Jelasity, (University of Szeged, Hungary)

User privacy is an széchenyi 2020 increasingly important concern

- Personal devices (phones, tablets, IoT devices, etc.) are a rich source of user-data
 - Interactions with apps, behavior, etc
- This data is highly sensitive, collecting it will become increasingly hard
 - EU: General data protection regulation (GDPR)
 - US: Consumer data privacy in a networked world: A framework for protecting privacy and promoting innovation in the global digital economy (White House Report, 2012)
- Let us design algorithms that leave raw data in place!

3

Federated learning (Google) SZÉCHENYI 2020

- Phones collect data locally
- Learning algorithm
 - The phones
 - Update current model based on local data
 - Send the model to the server
 - The server
 - Averages the models
 - Sends back the new model
 - Repeat
- Like the parameter server but with rather different assumptions

2018/10/29

Gossip learning

- If data can stay in the edge, why can't communication stay too?
- In fact gossip learning implements exactly that
- Possible advantages include
 - No single point of failure
 - Very low cost of entry
 - Unlimited scalability
 - Potentially more privacy (if done right)
 - Independence of infrastructure, censorship, financial interests, and so on

Gossip learning

- Phones collect data locally
- Learning algorithm
 - Every phone
 - Updates its current model based on local data
 - Sends model to a random peer
 - In the meantime merge (average) incoming models to current model
 - Repeat
- Lots of nitty gritty details
 - Handling churn, learning rate, concept drift, etc.

Experimental results

- 100 nodes
- Examples distributed uniformly
- Locally
 - 1 epoch
 - batch size: 10
- Logistic regression
- Uniform parameter sampling (100,50,25,10%)

- SpamBase
 - 57 features, 2
 classes, 4140/460
 (train/test)
- PenDigits
 - 16, 10, 7494/3498
- Human Activity
 - 561, 6, 7352/2947

Data collection for simulations

- 5:13 stun.schlund.de NAT detected Network Type: Port restricted cone Public IP: 160.114.36.240 Connected via WIFI Local IP: 10.11.4.195 Telenor HU Network Type: **HSPDA** C0:65:99:44:8D:35 wlab WIFI Link Speed: 48 Mbps WIFI Signal Strength: -45 dB STUNit
 - 2018/10/29

- Stunner application (Android)
- Has been running for years
- New completely rewritten release will be out soon with P2P measurements

Additional improvements

- Compression algorithms
 - Several approaches (sampling, quantization, stateful compression codecs, etc)
- Security approaches
 - Differential privacy, secure computation of mini batches, and so on...
- Flow control with the token account algorithm
 - With a fixed communication budget achieve optimal convergence speed
 - This is relevant to any decentralized algorithm!

The flow control problem

- Proactive (periodic) communication model
 - Fixed amount of traffic per period
- Good for rate limiting
 - Bursts
 - Bandwidth

The flow control problem

- Proactive (periodic) communication model
 - Fixed amount of traffic per period
- Good for rate limiting
 - Bursts
 - Bandwidth
- But slow
 - Lots of idle time

Solution: reactive?

Problem statement

- We want a solution that has the best properties of the two approaches
 - Almost as fast as the reactive approach
 - Almost as good for rate limiting as the proactive approach
 - And avoids the system becoming idle
- We want our solution to work for as many applications as possible

Simply shifting periods?

Node 1

Node 2

Node 3

Node 4

• It is an interesting idea

2018/10/29

Simply shifting periods?

- It is an interesting idea
- But it does not work
- Different chains of messages need different shifts
- Nevertheless it gives us a useful intuition
 - Try to allow
 message chains to
 flow while keeping
 rate control

Token account algorithm

- Every node receives one token in each period
- The reaction to incoming messages is immediate if there are non-zero tokens at the cost of "spending" tokens
- Similar to token bucket but
 - It is in the application layer with hooks to incorporate application semantics
 - We generalize it and offer a spectrum of algorithms between proactive and reactive
 - The proactive element offers fault tolerance too (avoiding idle state)

2018/10/29

AIME 2018, Budapest

Gossip learning result

- We can use the network only 10% of the time
- Yet we can reach almost 100% speed for the random walks
 - Fewer models walk but faster on a close-to-optimal path
 - Not obvious hot to do this for centralized federated learning!

Conclusions

- Performing most of the learning on user devices
 - Allows for combining all the local data (as opposed to isolated data silos)
 - Allows for increased privacy
 - Is very cost effective
- One can implement the entire learning process on the edge with a competitive performance
 - Optimizations like token account flow control
 - Or parameter sampling and other compression methods
- Security can also be addressed (was not discussed here)
 - Differential privacy, cryptographic techniques, etc

References

- Gábor Danner and Márk Jelasity. Robust decentralized mean estimation with limited communication. In Marco Aldinucci, Luca Padovani, and Massimo Torquati, editors, Euro-Par 2018, volume 11014 of Lecture Notes in Computer Science, pages 447–461. Springer International Publishing, 2018. (doi:10.1007/978-3-319-96983-1_32)
- Gábor Danner and Márk Jelasity. Token account algorithms: The best of the proactive and reactive worlds. In Proceedings of The 38th International Conference on Distributed Computing Systems (ICDCS 2018), pages 885– 895. IEEE Computer Society, 2018. (doi:10.1109/ICDCS.2018.00090)
- Gábor Danner, Árpád Berta, István Hegedűs, and Márk Jelasity. Robust fully distributed mini-batch gradient descent with privacy preservation. Security and Communication Networks, 2018:6728020, 2018. (doi:10.1155/2018/6728020)
- Edward Tremel, Ken Birman, Robert Kleinberg, and Márk Jelasity. Anonymous, fault-tolerant distributed queries for smart devices. ACM Transactions on Cyber-Physical Systems, 3(2):16:1–16:29, October 2018. (doi:10.1145/3204411)
- Árpád Berta and Márk Jelasity. Decentralized management of random walks over a mobile phone network. In Proceedings of the 25th Euromicro Conference on Parallel, Distributed and Network-Based Processing (PDP'17), pages 100–107, St. Petersburg, Russia, 2017. IEEE Computer Society. (doi:10.1109/PDP.2017.73)
- Árpád Berta, István Hegedűs, and Márk Jelasity. Dimension reduction methods for collaborative mobile gossip learning. In Proceedings of the 24th Euromicro Conference on Parallel, Distributed and Network-Based Processing (PDP'16), pages 393–397, Heraklion, Greece, 2016. IEEE Computer Society. (doi:10.1109/PDP.2016.20)
- István Hegedűs, Árpád Berta, Levente Kocsis, András A. Benczúr, and Márk Jelasity. Robust decentralized lowrank matrix decomposition. ACM Transactions on Intelligent Systems and Technology, 7(4):62:1–62:24, May 2016. (doi:10.1145/2854157)

2018/10/29