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User privacy is an
increasingly important concern

● Personal devices (phones, tablets, IoT devices, etc.) are a 
rich source of user-data

– Interactions with apps, behavior, etc
● This data is highly sensitive, collecting it will become 

increasingly hard

– EU: General data protection regulation (GDPR)
– US: Consumer data privacy in a networked world: A 

framework for protecting privacy and promoting 
innovation in the global digital economy (White House 
Report, 2012)

● Let us design algorithms that leave raw data in place!
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but with rather different assumptions



Gossip learning



Gossip learning

● Phones collect data locally
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Experimental results

● 100 nodes
● Examples distributed 

uniformly
● Locally

– 1 epoch
– batch size: 10

● Logistic regression
● Uniform parameter 

sampling (100,50,25,10%)

● SpamBase
– 57 features, 2 

classes, 4140/460 
(train/test)

● PenDigits
– 16, 10, 7494/3498

● Human Activity
– 561, 6, 7352/2947
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Data collection for simulations

● Stunner application (Android)

● Has been running for years

● New completely rewritten release will be 
out soon with P2P measurements
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Additional improvements

● Compression algorithms
– Several approaches (sampling, quantization, 

stateful compression codecs, etc)
● Security approaches

– Differential privacy, secure computation of mini 
batches, and so on…

● Flow control with the token account algorithm
– With a fixed communication budget achieve optimal 

convergence speed
– This is relevant to any decentralized algorithm!
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The flow control problem

time

Node 1 Node 2 Node 3 Node 4

● Proactive (periodic) 
communication 
model

– Fixed amount of 
traffic per period

● Good for rate limiting

– Bursts
– Bandwidth
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The flow control problem

time

Node 1 Node 2 Node 3 Node 4

● Proactive (periodic) 
communication 
model

– Fixed amount of 
traffic per period

● Good for rate limiting

– Bursts
– Bandwidth

● But slow

– Lots of idle time
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Solution: reactive?

time

Node 1 Node 2 Node 3 Node 4

● Reactive 
communication 
model

– React immediately
● Bad for rate limiting

– Bursts
– Bandwidth

● But maximal speed
● Becomes idle

– If all messages fail
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Problem statement

● We want a solution that has the best properties 
of the two approaches
– Almost as fast as the reactive approach
– Almost as good for rate limiting as the proactive 

approach
– And avoids the system becoming idle

● We want our solution to work for as many 
applications as possible 
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Simply shifting periods?

time

Node 1 Node 2 Node 3 Node 4

● It is an interesting idea
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Simply shifting periods?

time

Node 1 Node 2 Node 3 Node 4

● It is an interesting idea
● But it does not work

– Different chains of 
messages need 
different shifts

● Nevertheless it gives 
us a useful intuition

– Try to allow 
message chains to 
flow while keeping 
rate control
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Token account algorithm
● Every node receives one token in each period
● The reaction to incoming messages is 

immediate if there are non-zero tokens at the 
cost of “spending” tokens

● Similar to token bucket but
– It is in the application layer with hooks to 

incorporate application semantics
– We generalize it and offer a spectrum of algorithms 

between proactive and reactive
– The proactive element offers fault tolerance too 

(avoiding idle state)



172018/10/29 AIME 2018, Budapest

Gossip learning result
● We can use the 

network only 10% of 
the time

● Yet we can reach 
almost 100% speed 
for the random walks

– Fewer models 
walk but faster on 
a close-to-optimal 
path

● Not obvious hot to do 
this for centralized 
federated learning!
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Conclusions
● Performing most of the learning on user devices

– Allows for combining all the local data (as opposed to 
isolated data silos)

– Allows for increased privacy
– Is very cost effective

● One can implement the entire learning process on the edge 
with a competitive performance

– Optimizations like token account flow control
– Or parameter sampling and other compression methods

● Security can also be addressed (was not discussed here)

– Differential privacy, cryptographic techniques, etc
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