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User privacy iS an SZECHENYl@
iIncreasingly important concern

* Personal devices (phones, tablets, loT devices, etc.) are a
rich source of user-data

— Interactions with apps, behavior, etc

* This data is highly sensitive, collecting it will become
iIncreasingly hard

- EU: General data protection regulation (GDPR)

- US: Consumer data privacy in a networked world: A
framework for protecting privacy and promoting
innovation in the global digital economy (White House
Report, 2012)

* Let us design algorithms that leave raw data in place!
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Federated learning (Google) széc.mm@

* Phones collect data locally

* Learning algorithm

- The phones
* Update current model based on local data
* Send the model to the server

- The server

* Averages the models
* Sends back the new model

- Repeat

* Like the parameter server
but with rather different assumptions
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GOSSip Iearning szECHENYl@

 |f data can stay in the edge, why can't
communication stay too?

* |n fact gossip learning implements
exactly that A

* Possible advantages include

— No single point of failure

- Very low cost of entry
— Unlimited scalability
— Potentially more privacy (if done right)

- Independence of infrastructure,
censorship, financial interests,

and so on
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Gossip learning SZECHEN“@

* Phones collect data locally
* Learning algorithm

- Every phone

* Updates its current model based
on local data

 Sends model to a random peer

* In the meantime merge (average)
incoming models to current model

- Repeat

* Lots of nitty gritty details

- Handling churn, learning rate,
concept drift, etc.
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Experimental results szecuenvi G

* Examples distributed - 57 features, 2
uniformly classes, 4140/460
(train/test)
* Locally o
* PenDigits
- 1 epoch

- 16, 10, 7494/3498
* Human Activity
- 9561, 6, 7352/2947

— batch size: 10
* Logistic regression

e Uniform parameter
sampling (100,50,25,10%)
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Data collection for simulations ., :cueny @

» Stunner application (Android)

stun.schlund.de

* Has been running for years

* New completely rewritten release will be
out soon with P2P measurements
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Additional improvements st @

 Compression algorithms

- Several approaches (sampling, quantization,
stateful compression codecs, etc)

e Security approaches

— Differential privacy, secure computation of mini
batches, and so on...

* Flow control with the token account algorithm

- With a fixed communication budget achieve optimal
convergence speed

— This is relevant to any decentralized algorithm!
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The flow control problem — s#=@

* Proactive (periodic)
. \ .............. communication
model

. - Fixed amount of
™ traffic per period

time
* Good for rate limiting
| P A ] - Burets

- Bandwidth

Node 1 Node 2 Node 3 Node 4
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The flow control problem  s#c*=\"@

* Proactive (periodic)
communication
model

- Fixed amount of
time traffic per period

» Good for rate limiting
' - Bursts
- Bandwidth

- Lots of idle time

Node 1 Node 2 Node 3 Node 4
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Solution: reactive? cicamT iy

* Reactive
— — communication
- model
'\‘k

- React immediately

time e

- Bursts
- Bandwidth

Node 1 Node 2 Node 3 Node 4
- If all messages falil
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Problem statement szecHznYI @

 We want a solution that has the best properties
of the two approaches

- Almost as fast as the reactive approach

— Almost as good for rate limiting as the proactive
approach

- And avoids the system becoming idle

* We want our solution to work for as many
applications as possible
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Slmply Sh|ft|ng periOdS? szECHENvl@

* |tis an interesting idea

time

Node 1 Node 2 Node 3 Node 4
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Simply shifting periods? cicamT iy

* |t is an interesting idea
* But it does not work

- Different chains of
fime messages need
different shifts

Y * Nevertheless it gives
us a useful intuition

- Try to allow

message chains to
Node1  Node2  Node3  Node 4 flow while keeping
rate control
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Token account algorithm ~ s#*="@

* Every node receives one token in each period

* The reaction to incoming messages is
iImmediate if there are non-zero tokens at the
cost of “spending” tokens

e Similar to token bucket but

— It is in the application layer with hooks to
Incorporate application semantics

- We generalize it and offer a spectrum of algorithms
between proactive and reactive

— The proactive element offers fault tolerance too

(avoiding idle state)
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relative average model age

Gossip learning result
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SZECHENY!I @

* We can use the
network only 10% of
the time

1 * Yet we can reach

almost 100% speed
for the random walks

- Fewer models
walk but faster on
a close-to-optimal
path

 Not obvious hot to do
this for centralized
federated learning!
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Conclusions SZECHENYI@

* Performing most of the learning on user devices

— Allows for combining all the local data (as opposed to
isolated data silos)

— Allows for increased privacy
- Is very cost effective

* One can implement the entire learning process on the edge
with a competitive performance

— Optimizations like token account flow control
- Or parameter sampling and other compression methods
e Security can also be addressed (was not discussed here)

- Differential privacy, cryptographic techniques, etc
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