

Applied Artificial Intelligence

for Assisted and Autonomous Driving

Robert-Zsolt Kabai Machine Learning Expert @ Continental

O G Z

SensePlanAct

Chassis & Safety | Advanced Driver Assistance Systems

Agenda

- Continental Advanced Driver Assistance Systems
- 2 Artificial Intelligence in ADAS
- **3** From Research to Industry
- 4 Summary

Continental ADAS Products History

> Continental is much more than tires!

BU ADAS Public

Continental ADAS Products History

> Continental is much more than tires!

🙆 ntinental 🖄

BU ADAS Public 30.10.2018 Robert-Zsolt Kabai

4

Continental ADAS Products History

> Continental is much more than tires!

Competence Center Deep Learning

BU ADAS Public

On the Way to Automated Driving

Ontinental 🏂

BU ADAS Public

Comprehensive Environment Model

- Multiple types of sensors
- Plan and act based on our understanding of the environment

BU ADAS Public 30.10.2018 Robert-Zsolt Kabai

7

Traditional algorithms: "Software 1.0"

- Algorithm defined by the programmer.
- Algorithm solves the problem directly.
- Interpretable, predictable output.
- Fails to handle problems beyond certain complexity. Autonomous driving is beyond.

Machine Learning: "Software 2.0"

- Algorithm specifies how to learn another algorithm based on many examples of task-solution pairs.
- Solves the problem indirectly.
- Needs *lots* of data to train.
- (Will be) capable of reaching human level and beyond.

Al is better than classical SW

Example Pedestrian Detection (caltech pedestrian dataset)

Al shows great potential

🗿 The formation of the

- Revolution in Computer Vision
- Deep Learning outperforms classical methods
- Radical performance increase
- Industry-wide shift for automotive technology

BU ADAS Public

Real world Deep Learning challenges

> Fundamental difference in weather conditions

Precipitation

Visibility conditions

Real world Deep Learning challenges

- The real world is often too complicated to model it completely
- Deep Learning is an approach to deal with that

🔞 ntinental 🏂

BU ADAS Public

From Research to Industry Methods

🔞 ntinental 🏂

From Research to Industry Methods

BU ADAS Public

From Research to Industry Methods

Applications vs Methods – Different problems to solve

From Research to Industry Product

Complexity Reduction

Example: Object Detection @Kitti dataset "cars hard"

From Research to Industry Product

Complexity Reduction

Embedded Hardware

PrefetchingSparsity

OR-Nets

ôntinental 🏂

From Research to Industry Product

Complexity Reduction

Example: Object Detection @Kitti dataset "cars hard"

Embedded Hardware

Experience yourself

🛈 ntinental 🏂

Summary

- > Continental is working on ADAS systems for over 20 years
- > AI shows great potential to be a key technology for automated driving
- > Research results are often a starting point for a development of a great product
- > Major challenges
 - Wide variety of data (weather conditions, rare events)
 - Big Data (several 10s of Petabytes)
 - Training Hardware (distributed, scalable, fast access)
 - > Embedded Hardware
 - Simulation
 - Validation

Safe and Dynamic Driving towards Vision Zero

Continental 3

http://www.continental-jobs.com

SensePlanAct