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Applied Artificial Intelligence

for Assisted and Autonomous Driving

Robert-Zsolt Kabai
Machine Learning Expert @ Continental
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Continental Advanced Driver Assistance Systems
Artificial Intelligence in ADAS

From Research to Industry
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History

Continental is much more than tires!
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History

Continental is much more than tires!

The Future in Motion
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Foundation Adaptive Cruise First Camera 1st Multifunction
of ADAS Control (Volvo) Stereo Camera
(Daimler) (Daimler)
Today:

Millions of sensors sold
Many Development centers worldwide
Competence Center Deep Learning
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On the Way to Automated Driving

NCAP Automated
New Car Assessment Parkin 9

Programme

Partly / Highly

Automated Driving Self Driving Car

S,
EURO@NCAP

188 0-9"1

e, -
LATINGNCAP 3
o

¥ s

(ontinental .



¥
nsive EnvironmentModel

-~

-
-
-

> Vititiple type

2 Plan anaac JE.S&C] pRrouUrEUnderstanding of the enwronment

BU ADAS 30.10.2018
Public Robert-Zsolt Kabai 7



Storing & retrieving  Recording financial ~ Detecting pedestrians  Fully autonomous Hardest task a human
data transactions on images driving is capable to solve

Traditional algorithms

Task complexity

Traditional algorithms: “Software 1.0”  Machine Learning: “Software = 0”

Algorithm defined by the programmer. Algorithm specifies how to learn another algorithm —

based on many examples of task-solution pairs.
Algorithm solves the problem directly.

Solves the problem indirectly.

Interpretable, predictable output. Needs lots of data to train.

Fails to handle problems beyond certain (Will be) capable of reaching human level and beyond.
complexity. Autonomous driving is beyond.
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Al shows great potential
Revolution in Computer Vision
Deep Learning outperforms classical methods
Radical performance increase

Industry-wide shift for automotive technology
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Example Pedestrian Detection
(caltech pedestrian dataset)
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Fundamental difference in weather conditions

Precipitation

Visibility conditions
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The real world is often too complicated
to model it completely

Deep Learning is an approach to deal
with that
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Methods

Datasets
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Methods

Datasets

Planning

10k-100k
—

[l Right-hand side traffic

B Left-hand side traffic
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Methods

Datasets Planning 90% is not enough

Biases

(Adversarial) attacks

@
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10k-100k  VS. W I Right-hand side traffic
9

B Left-hand side traffic

sources:
(1) Ivan Evtimov et al.: Robust Physical-World Attacks on Deep Learning Models
others: pixabay.com
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Applications vs Methods — Different problems to solve

Semantic Depth Estimation

Object Detection Segmentation

Human Pose Estimation

METHODS
APPLICATIONS

Method A Method C Method D
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From Research to Industry

Product

Complexity Reduction
Example: Object Detection
@Kitti dataset ,cars hard®
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From Research to Industry

Product

Complexity Reduction

Example: Object Detection
@Kitti dataset ,cars hard”
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Embedded Hardware

FPGA PipeliningQuantization
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Product

Complexity Reduction

Example: Object Detection
@Kitti dataset ,cars hard*
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original (yolo v2) mreduced

Embedded Hardware

PipeliningQuantization

FixedPoint Sparsity
GPU__ XNOR-Nets

Experience yourself
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Continental is working on ADAS systems for over 20 years
Al shows great potential to be a key technology for automated driving
Research results are often a starting point for a development of a great product
Major challenges

Wide variety of data (weather conditions, rare events)

Big Data (several 10s of Petabytes)

Training Hardware (distributed, scalable, fast access)

Embedded Hardware

Simulation

Validation
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http://www.continental-jobs.com
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