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Some details of the program

@ The program started in September 2018

@ It runs in the frame of the National Excellence Program (NKP) (NK-
FIH)

© It involves 5 institutes: RENYI, SZTAKI, PPKE, SZTE, ELTE
© The budget is roughly 1 billion Ft = 3.5 M dollars for 3 years



The major goals of the program

@ Mobilize the community of mathematicians to do research in Al (Hun-
gary is traditionally good at mathematics)

@ Help in the education (university courses, PhD programs, popularizing
lectures, etc...)

© Invigorate collaboration between institutions

©

Building bridges between theory and practice in Al

© Demonstrate the usefulness of Al to the society (Pilot program: a
useful medical application)



3 levels of abstraction

@ Applied: use existing models For example: Train neural networks
for concrete problems (classification of chronic wounds, car driving,
etc...)

@ Semi-theoretical: Improve, develope models For example: "Batch
Normalization: Accelerating Deep Network Training by Reducing In-
ternal Covariate Shift"

© Theoretical: prove theorems, understand matematical pheno-
mena For example: "Testing the manifold hypothesis" (Journal of
the American Mathematical Society)
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We think that interaction between these three directions is essential in the
development of Al. Our goal is to create a research environment in which
theoretical directions can directly communicate with the more applied di-
rections.
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A few words about education

Al is related to almost everything we do. Al related courses should be avai-
lable at all kinds of universities and faculties. Traditionally we associate Al
with computer science, information technology, programming or mathema-
tics. In reality it is much broader. An example: In the frame of our program
we started an experimental course at the medical university (SOTE) entit-
led "Mesterséges intelligencia szerepe az orvostudomanyban".



Important challenges in Al

Al is very different from classical computer science. It does not have a well
founded mathematical theory. The most important concept is generaliza-
tion which makes Al work but it is not very well understood.There is a set
if clever engineering tricks that make it work. A real mathematical under-
standing of deep learning could lead to even better models and practical
results. Theoretical mathematicians should work closely with more applied
Al specialists.

There is also the problem of interpretation: Even if a neural network works
quite well, in many cases we need to understand why it does something.
For example: a self driving care makes an accident.

Formal reasonong: Al is not very good at this. Al should be at least as
good as humans but we seem to be far from this. (AlphaGo is encouraging!
it simulates intuition and it exceeds humans)



Mathematical projects

@ Find the mathematics of dimension reduction

@ Find appropriate mathematical hypothesis for the structure of real life
data sets

© Complexity notions for machine learning (how to measure the comp-
lexity of a data set?)

@ Find the mathematics of generalization

o

Mathematical analysis of various models of machine learning

@ Interesting connections with quantum mechanics, quantum comput-
ing and statistical physics



Sparsity and dimension reduction

Sparsity ~ differentiating, dimension reduction ~ simplifying, compressing.
Both are happening in a well trained neural net but they have different
roles. We focus on dimension reduction. This goes back to basic methods
in statistics: linear regression, PCA.




Principal Component Analysis (PCA)

Approximating a 3 dimensional point set with 1 dimensional line.

4

PCA is used in machine learning and it works surprisingly well for certain
problems.



Autoencoders and PCA

Auto encoders are special neural networks with a bottle neck to force the
network to compress data.
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If the activation function is linear then autoencoder is basically equivalent
with PCA. This way autoencoders generalize PCA.



Dimension reduction

Deep learning is a very far reaching generalization of the basic methods of
statistics

important facts: deep learning is very non-linear! A mathematical aspect
of deep learning: We approximate high dimensional complicated data with
lower dimensional, simpler data. (A map is constructed from the high
dimensional data to the low dimensional data.)

Is there a mathematical theory for such approximations?

Answer: Yes and no. There are many theories and results. Fourier analysis
is used in .jpg format. The recently emerging theory of limits of structures
is fundamentally based on dimension reduction.



Tensor networks

Advertisement: Linear algebra is one of the most useful subject in mathe-
matics. Tensor networks give rise to a far reaching and beautiful extension
of linear algebra and especially it generalizes matrix multiplication in a us-
eful way. They provide a very efficient language in quantum mechanics to
describe quantum states.

What is a tensor? A tensor of rank n in dimension d is described by
an array of numbers M, i, . ; such that 1 < iy, i>,...,ir < d. Arank 0
tensor is a scalar, a rank 1 tensor is a vector, a rank 2 tensor is a matrix,
a 3 tensorisad x d x d array etc...

Example: A probability deistribution of 0 — 1 sequences of length 3 can
be looked at as a tensor of rank 3 in dimension 2. Indeed: the distribution
is described by numbers M, where i,j,k € {1,2} and M, is the
probability of the sequence (i —1,j — 1,k — 1).



Tensor networks and picture calculus

Graphically we represent a k-tensor by a point with k open edges attached
to it. We call them k-stars.
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Vector-matrix operations can be generalized to higher tensors. These ge-
neral operations can be represented by pictures in which we glue k-stars
together along open edges. Pictures for matrix product and scalar product:
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Tensor networks and picture calculus

These pictures represent more complicated operations with higher tensors:
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The output of the operation is a tensor whose rank is equal to the number
of remaining open ends on the picture.



The formula for tensor operations

Sketch: We put labels from 1 to d in all possible ways on the edges. For
each such labeling we take the product of the corresponding tensor values.
We take the sum of these products over all possible labelings of the closed
edges while the labels on the open edges are fixed.
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Note: By changing C3 on the picture we obtain a function that maps
3-tensors to 4 tensors. In quantum mechanics, tensors describe entangled
quantum states.



Tensor networks as computers

Quantum circuits are special tensor networks composed of tensors called
quantum gates. This highlights the connection between quantum com-
puting and tensor networks.



Tensor networks as computers

Quantum circuits are special tensor networks composed of tensors called
quantum gates. This highlights the connection between quantum com-
puting and tensor networks. Quite surprisingly it turns out that tensor
networks can also be used in machine learning. This is an area of active
research.

Perspectives: There are many interesting open questions about tensors
and tensor networks. Understanding tensor networks obtained by the ite-
ration of a single tensor is an interesting and complicated problem. In
statistical physics tensor networks are also known as edge coloring models.
Partition functions of certain closed edge coloring models are characterized
in

B. Szegedy: Edge coloring models and reflection positivity, J. Amer. Math.
Soc. 20 (2007), 969-988

Results indicate that there should be some form of generalized spectral
theory for k-tensors which is related to iteration. This generalized spectral
theory is very likely relevant in both physics and machine learning. This is
a rich subject which is part of our research program.



Fuzzy Boolean functions

A fuzzy boolean function is a function of the form f : {0,1}" — [0, 1]. In
other words the input is a string of n bits and the output is a probability.
For example the bits are the pixels of a black and white picture and the
output is the probability that there is a cat on the picture.

What kind of mathematical properties do fuzzy boolean functions satisfy
that come from natural decision problems?
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A fuzzy boolean function is a function of the form f : {0,1}" — [0, 1]. In
other words the input is a string of n bits and the output is a probability.
For example the bits are the pixels of a black and white picture and the
output is the probability that there is a cat on the picture.

What kind of mathematical properties do fuzzy boolean functions satisfy
that come from natural decision problems?

Lipschitz property: If we change only a few pixels then the probability
changes only a little.

(Mote precisely |f(v) — f(w)| < cd(v, w)/n where c is the Lipschitz cons-
tant.)
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Unfortunatelly the Lipschitz property is too general. It seems that natural
classification problems satisfy a stronger property.

If we sample say 1000 random pixels we can guess with (maybe) 10% error
the probability that there is a cat on the picture.

Definition: A fuzzy Boolean function is k, e-holographic if for every input
v € {0,1}" if we choose k random bits by, b, ..., by form v (together
with their location) then with probability at least 1 — ¢ they determine f(v)
with an error at most e.
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f is k, e-holographic measures the "complexity" of f relative to the error
€. The lower the complexity is the more holographic the function is.
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Let us fix an error, say ¢ = 0.01. The smallest k for which a fuzzy function
f is k, e-holographic measures the "complexity" of f relative to the error
€. The lower the complexity is the more holographic the function is.

Example 1. Average: f(v) = 1

=157 1 vi. is low complexity. Why? Law of
large numbers

Example 2. Smooth weighted average f(v) = 1 37 | \;v;. The vector \;

n
is bounded in the maximum norm.

Example 3. Smooth weighted average substituted into a continuous func-
tion : a single neuron.

Example 4. Bounded layer smooth neural network.

Example 5. f(v) = vy (coordinate function) is very much not holographic.
f=>"",vimod 2 is even less holographic.



The main theorem

The main theorem says that example 4 (bounded smooth neural networks)
covers the holographic functions.
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The main theorem says that example 4 (bounded smooth neural networks)
covers the holographic functions.
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Proof uses a version of the hypergraph regularity lemma - a fancy modern
tool in combinatorics.

Problems: 1.) The smoothness restrictions on the Neural networks may
not be completely natural. 2.) Quantitative problems.



Complexity notions related to machine learning?

Standard computer science uses complexity classes such as P and NP.
Some experts speculate that machine learning works well because there is
a low complexity phenomenon for data emerging from the physical world.
How should we measure the complexity in deep learning?

Holographic property leads to a complexity notion for fuzzy boolean func-
tions. There are many other promising complexity notions. For example we
can say that a function f has low complexity if it can be well approximated
by low degree polynomials.

Boltzmann machines (See work of Goeffrey Hinton) motivate similar comp-
lexity notions for probability distributions on {0,1}". This may be rela-
ted to the theory in quantum mechanics which says that quantum states
appearing in the physical world can be modeled by tensor networks of
"reasonable" size.

How are all these complexity notions related to each other?
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Let S be a data set in large dimension.
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Other mathematical problems related the theoretical

machine learning and limit theories

Let S be a data set in large dimension. What is the approximative geometry
of S? Manifold learning: Can we approximate S with a low dimensional
manifold? This question is closely related to non linear PCA.

Hope: Limit theories may give new insight into the "large scale geometry"
of S.

Fuzzy Boolean functions may be interpreted as fuzzy data sets. Our the-
orem gives a new approach to study the large scale geometry. Work in
progress.





