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The quantum world is very sensitive to the value of Planck’s constant h.
For instance, as discussed by Yang [1], doubling the value of h would result
in a radical change on the geometric sizes and apparent colors, the solar
spectrum and luminosity, as well as the energy conversion between light
and materials.
If, as it is believed, h had been steadily decreasing since the emergence of
the early universe it would imply that there is an ongoing transition from
quantum to classical, mixed states becoming pure, and pure states
evolving into classical states. We would thus have an emergence of the
classical from the quantum. Reversing this scenario in time could also
imply that the early Universe was much more “quantum” than it is today.
These hypotheses should of course be confirmed by cosmological
experimental data.

Pao-Keng Yang: How does Planck’s constant influence the
macroscopic worlds? Eur. J. Phys. 37, 055406 (2016).
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Suppose Planck’s constant h has undergone a relative small change of δ,
thus becoming

hδ = (1+ δ)h.

The Bohr radius of a hydrogen atom is given by a0 = 4πε0 h̄2/mec2.
Assuming that me and c are conserved this radius

aδ
0 = (1+ δ)2a0 ≈ (1+ 2δ)a0

hence the relative change of Bohr’s radius is approximately 2δ.
Extrapolating to other atoms, it is reasonable to assume that their size
would also increase or decrease by a factor 1+ 2δ. Since all atoms would
change approximately equally, we wouldn’t be able to detect this change of
size. However, having supposed that the mass of the Earth remains the
same,its radius RE would change by a factor (1+ δ)4 ≈ (1+ 4δ) and
become

Rδ
E ≈ RE (1+ 4δ).
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Suppose for instance that δ = 2.5%; this leads to an increase of radius of
the Earth into by 10%. Due to the conservation of angular momentum the
spinning of the Earth would slow down, so that the length of a day would
increase to approximately 27 hours; since the masses of the Earth and the
Sun are not affected and there would be less than 365 days in a year! The
acceleration g ≈ 9.81 ms−2 of gravity would become

g δ =
GME

(Rδ
E )
2
≈ g(1− 8δ);

for δ = 2.5% it would thus decrease by 20%; the density of the
atmosphere near the surface of the Earth would thus become substantially
smaller because of the weaker gravity.
Practical consequences!
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Variable Planck’s Constant?

Planck’s constant is a central number for modern physics. To test whether
Planck’s constant is really constant, Mohageg and Kentosh turned to the
same GPS systems that car drivers use to find their way home. GPS relies
on the most accurate timing devices we currently possess: atomic clocks.
These count the passage of time according to frequency of the radiation
that atoms emit when their electrons jump between different energy levels.
Kentosh and Mohageg looked through a year’s worth of GPS data of seven
highly stable GPS satellites and found that the corrections depended in an
unexpected way on a satellite’s distance above the Earth. After careful
analysis of the data they obtained, Kentosh and Mohageg concluded that
h is identical at different locations to an accuracy of seven parts in a
thousand. Their results, which have been largely commented (and
criticized) in the media, are however controversial.

J. Kentosh and M. Mohageg: Global positioning system test of the
local position invariance of Planck’s constant, Phys. Rev. Lett.
108(11), 110801 (2012)
M. de Gosson (Institute)
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The fine structure constant

The variability of physical “constants” is a possibility that cannot be
outruled and which has being an active area of research for some time in
cosmology and astrophysics. Paul Dirac already suggested this possibility
in 1937 (“Large Numbers Hypothesis”) in a letter to Nature questioning
Eddington’s attempts to calculate the constants from scratch. That some
constants of Nature could vary in space and time is a subject of fascination
which has motivated numerous theoretical and experimental researches.
Planck’s constant also appears in the fine structure constant. Recent
cosmological advances by John Webb, Barrow, Berengut, Flambaum et al.
using Keck and VLT telescopes in Hawaii, have put an upper bound on the
relative change of the fine structure constant α = e2/4πε0 h̄c ≈ 1/137 at
roughly 10−17 per year. Space-time variations of α in cosmology is a new
phenomenon beyond the standard model of physics which, if proved true,
must mean that at least one of the three fundamental constants e, h̄, c
that constitute it must vary. This is a delicate issue, related to choices of
units.
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Dependence of the Wigner distribution on h

Let ψ ∈ L2(Rn) and z = (x , p). The textbook definition of the Wigner
transform of ψ goes as follows.

W h̄ψ(x , p) =
( 1
2π h̄

)n ∫
e−

i
h̄ pyψ(x + 1

2y)ψ
∗(x − 1

2y)d
ny .

This can be written as a probability amplitude:

W h̄ψ(z) =
( 1

π h̄

)n 〈ψ|R̂(z)ψ〉 (1)

where R̂(z0) is Grossmann—Royer’s reflection operator:

R̂(z0)ψ(x) = e
2i
h̄ p0 ·(x−x0)ψ(2x0 − x)

(NB: we have R̂(z0) = T̂ (z0)R̂(0)T̂ (z0)−1 where T̂ (z0) is the usual
Heisenberg displacement operator).
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The Wigner transform of a state |ψ〉 plays the role of a “quasiprobability
distribution”; under suitable integrability conditions on ψ it has the “right
marginals” ∫

W h̄ψ(x , p)dnp = |ψ(x)|2∫
W h̄ψ(x , p)dnx = |F h̄ψ(p)|2

but it usually takes negative values, unless ψ is a Gaussian function (in
particular, a coherent state). It also allows to calculate averages of
observables:

〈Â〉ψ =
∫
W h̄ψ(x , p)a(x , p)dnxdnp.

The Wigner transform is at the basis of the phase space picture of
quantum mechanics (Wigner—Weyl—Moyal formalism).
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The Wigner transform also plays a crucial role in the study of mixed
quantum states (i.e. quantum states we only have an incomplete
knowledge). By definition the density matrix of a mixed state is a convex
sum

ρ̂ h̄ = ∑
j

λj |ψj 〉〈ψj |

of projectors |ψj 〉〈ψj | weighted by the probabilities λj . The datum of ρ̂ h̄ is
equivalent to that of its Wigner distribution

ρ h̄(x , p) = ∑
j

λjW h̄ψj (x , p)

and ρ has again a statistical interpretation:

〈Â〉ρ =
∫

ρ h̄ψ(x , p)a(x , p)dnxdnp.
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First question

We ask: can W h̄ψ be the Wigner transform of another function ψ′ if we
change the value of h̄ to h̄′? The answer is NO !!! Suppose indeed that
W h̄ψ = W h̄′ψ

′. Taking the marginals with respect to p we have

|ψ(x)|2 =
∫
W h̄ψ(x , p)dp =

∫
W h̄′ψ

′(x , p)dp = |ψ′(x)|2

hence 〈ψ|ψ〉 = 〈ψ′|ψ′〉. But we also have (Moyal identity)∫∫
W h̄ψ(x , p)2dnxdnp =

( 1
2π h̄

)n 〈ψ|ψ〉2∫∫
W h̄′ψ

′(x , p)2dnxdnp =
(

1
2π h̄′

)n
〈ψ′|ψ′〉2

hence W h̄ψ = W h̄′ψ
′ and 〈ψ|ψ〉 = 〈ψ′|ψ′〉 imply that we must have

h̄ = h̄′:

No pure state remains pure if h̄ changes!
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Second question

Assume that we have determined a phase space distribution ρ(x , p) (by
quantum tomography, homodyne detection, or any other method). Once ρ
is known we can reconstruct the quantum state using some suitable
quantization procedure. Suppose that ρ̂ h̄ and ρ̂ h̄′ are density matrices
corresponding to the same ρ but to different values h and h′ of Planck’s
constant. Since

Tr(ρ̂2h̄) = (2π h̄)n
∫

ρ(x , p)2dnxdnp

Tr(ρ̂2h̄′) = (2π h̄′)n
∫

ρ(x , p)2dnxdnp

we must have

Tr(ρ̂2h̄′) =
(
h̄′

h̄

)n
Tr(ρ̂2h̄).

The purity of a quantum state thus critically depends on the value of h; in
particular if the new value h̄′ is too large then ρ̂ h̄′ will no longer represent
a quantum state since it would lead to Tr(ρ̂2h̄′) > 1.
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The mathematical problem

An arbitrary phase space distribution ρ(x , p) is the Wigner distribution of
a quantum state if and only if the associated quantization ρ̂ h̄ has the
three following properties:

ρ̂ h̄ is of trace-class and Tr(ρ̂ h̄) = 1;
ρ̂ h̄ is self-adjoint: ρ̂∗h̄ = ρ̂ h̄;

ρ̂ h̄ ≥ 0 that is 〈ρ̂ h̄ψ|ψ〉 ≥ 0 for all ψ.

It is the positivity property ρ̂ h̄ ≥ 0 which is very diffi cult to verify.
There is no "easy" method available.
We are running short of mathematics!

See however:

E. Cordero, M. de Gosson, F. Nicola: On the Positivity of Trace Class
Operators https://arxiv.org/abs/1706.06171
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Gaussians states

Let us now consider Gaussians of the type

ρ(z) = (2π)−n
√
detΣ−1e−

1
2Σ−1z 2 (2)

where Σ is a 2n× 2n covariance matrix. We have ρ ≥ 0 and∫
ρ(, pz)dnxdnp = 1 hence the function ρ can always be viewed as a

classical probability distribution. It is the h̄-Wigner distribution of a
quantum sate if and only if Σ is such that

Σ+
i h̄
2
J ≥ 0 , J =

(
0 I
−I 0

)
.

These conditions are equivalent to the indeterminacy principle in its
Schrödinger—Robertson form:

∆p2j ∆x2j ≥ ∆(xj , pj )2 + 1
4 h̄

2.
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The purity of the corresponding Gaussian state is

Tr(ρ̂2) =
(
h̄
2

)n
det(Σ−1/2)

hence ρ̂ is a pure Gaussian state if and only if det(Σ) = ( h̄/2)n.
Therefore:

Any decrease of h̄ leads to a loss of purity: the state becomes more
and more mixed; indeterminacy increases;

Any increase of h̄ “purifies” the state until it reaches the critical
value 2(detΣ)1/n; thereafter it becomes a classical state: we are
witnessing a transition from the quantum world to the classical world.
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General Mixed States

We are lacking almost altogether a classification of these state transitions
outside the Gaussian case. Simple examples show that the set of admissible
values of h̄ can have an extremely intricate structure (in particular it can
be discrete). There exist theoretical conditions (the “KLM conditions”)
which allow in principle to test for which values of h̄ the function ρ is the
Wigner distribution of a quantum state but these conditions are of little
use outside the case of Gaussian distributions, or pure states. This is
because checking them amounts to verify an uncountable infinite set of
inequalities, which is impossible to implement in practice, even numerically.

M. de Gosson, Mixed quantum states with variable Planck constant,
Phys. Lett. A, 381(36), 25 September 2017

E. Cordero, M. de Gosson, F. Nicola: On the Positivity of Trace Class
Operators https://arxiv.org/abs/1706.06171
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The KLM conditions

Let σ(z , z ′) = (z ′)T Jz (z = (x , p)) be the symplectic form on phase
space R2n

z ≡ Rn
x ×Rn

p . Let

ρ♦(z) =
∫
e iσ(z ,z ′)ρ(z ′)dz ′

be the “symplectic Fourier transform”of a quasi-distribution (classical, or
quantum) ρ. Assume that ρ♦ is continuous at the origin. Then ρ̂ h̄ ≥ 0 if
and only if for all z1, ..., zN ∈ R2n the symmetric N ×N matrix Λ with
entries

Λjk = (e
− i h̄

2 σ(zj ,zk )ρ♦(zj − zk ))1≤j ,k≤N
is positive semi-definite: Λ ≥ 0. This condition is due to Kastler, Loupias,
and Miracle—Sole (ca. 1968). The proof is highly non trivial.

These conditions are very sensitive to the value of h̄!

The set of all h̄ for which ρ̂ h̄ ≥ 0 is called the Wigner spectrum of ρ.
M. de Gosson (Institute)
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Entanglement

A mixed (or pure) quantum state is said to be separable (with respect to
the partition (A,B) of the position and momentum variables) if there exist
sequences of density matrices ρ̂Aj and ρ̂Bj and real probabilities αj such that

ρ̂ h̄ = ∑
j∈I

αj ρ̂
A
j ⊗ ρ̂Bj . (3)

If this is not the case, the state is said to be entangled. Conditions for
separability and entanglement are not fully understood; there is a
necessary condition (the PPT criterion), but we are lacking suffi cient
conditions outside the Gaussian case (and a few other examples).
However since the very fact of the operator ρ̂ h̄ to be sensitive to Planck’s
constant strongly suggests that separability and entanglement might also
dependent on h. Work very much in progress! Any advance might lead to
experimental setups allowing to test the variability of h!

M. de Gosson and Mohageg, On the Dependence of Quantum States
on the Value of Planck’s Constant:
https://arxiv.org/abs/1612.05578).
M. de Gosson (Institute)
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The Symplectic Camel

(Alias Gromov’s symplectic non-squeezing theorem, 1985).

“It is easier for a camel to go through the eye of a needle,
than for a rich man to enter into the kingdom of God” (Mark
10:25).

Key paper:

M. Gromov, Pseudoholomorphic curves in symplectic manifolds.
Invent. Math. 82 (1985)).
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The Symplectic Camel:

M. Gromov, Pseudoholomorphic curves in symplectic manifolds.
Invent. Math. 82 (1985)).

Theorem
Let B2n(r) = {z : |z | ≤ r} and Z 2nj (R) = {z : x2j + p

2
j ≤ R2}. If there

exists a canonical transformation f such that f (B2n(r)) ⊂ Z 2nj (R) then
r ≤ R.
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Dynamical illustration

The ball is being deformed by the action of a canonical transformation:

The projection is on plane of conjugate (canonical) coordinates xj , pj .M. de Gosson (Institute)
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Choose now R =
√
h̄; then the area of the projection on each plane of

conjugate coordinates xj , pj remains at least π(
√
h̄)2 = π h̄ = 1

2h. The
deformed ball is a “quantum blob”, and is closely related to the uncertainty
principle. Quantum blobs provide a coarse graining of phase space, better
than the usual decomposition in cubic cells with volume ∼ h̄n. The
number c = π h̄ is called the symplectic capacity of the quantum blob; it
is a fundamental symplectic invariant in view of Gromov’s theorem.

M. de Gosson, The Symplectic Camel and the Uncertainty Principle:
The Tip of an Iceberg? Found. Phys. 39(2), 194—214. (2009)

M. de Gosson, Quantum blobs. Found. Phys. 43(4), 440—457 (2013)

M. de Gosson and F. Luef, Symplectic Capacities and the Geometry of
Uncertainty: the Irruption of Symplectic Topology in Classical and
Quantum Mechanics. Phys. Reps. 484, 131—179 (2009)
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Symplectic Capacities

A symplectic capacity on R2n assigns to every Ω ⊂ R2n a number
c(Ω) ≥ 0, or +∞, satisfying:

(SC1) Monotonicity. If Ω ⊂ Ω′ then c(Ω) ≤ c(Ω′);
(SC2) Symplectic invariance. If f is a canonical transformation

then c(f (Ω)) = c(Ω);
(SC3) Conformality. If λ is a real number then c(λΩ) = λ2c(Ω);

here λΩ is the set of all points λz when z ∈ Ω;
(SC4) Nontriviality. c(B2n(R)) = πR2 = c(Z 2nj (R)).

Here B2n(R) is the ball |x |2 + |p|2 ≤ R2 and Z 2nj (R) the cylinder
x2j + p

2
j ≤ R2. The existence of symplectic capacities (in fact infinitely

many) follows from Gromov’s theorem. When n = 1 all symplectic
capacities coincide with area on connected and simply connected surfaces.
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Symplectic Capacities

Two distinguished symplectic capacities are:

cmin(Ω) = sup
f ∈Symp(n)

{πR2 : f (B2n(R)) ⊂ Ω} (4a)

cmax(Ω) = inf
f ∈Symp(n)

{πR2 : f (Ω) ⊂ Z 2nj (R)}. (4b)

That they really are symplectic capacities follows from Gromov’s
theorem.

We have
cmin(Ω) ≤ c(Ω) ≤ cmax(Ω) (5)

for every symplectic capacity c . For λ ∈ [0, 1] the function
c = λcmax(Ω) + (1− λ)cmin(Ω) is a symplectic capacity.
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Ellipsoids

The construction of symplectic capacities is notoriously diffi cult (the fact
that symplectic capacities exist is actually equivalent to Gromov’s
non-squeezing theorem). However they all agree on phase space ellipsoids:
Let Ω = {z : Mz · z ≤ R2} where M is a symmetric positive definite
2n× 2n matrix. We have

c(Ω) =πR2/λmax (6)

for every symplectic capacity c ; here λmax is the largest symplectic
eigenvalue of M. The symplectic eigenvalues are defined as follows: Since
M > 0 we have JM ∼ M1/2JM1/2 hence the eigenvalues of JM are of the
type ±iλj with λj > 0. The symplectic eigenvalues are by definition
λ1, ..., λn.
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Covariance matrix

We assume that ρ is a (quasi-)probability density on R2n. (In classical
physics ρ ≥ 0; in quantum mechanics ρ can take < 0 values: Wigner
function, or convex sum thereof: mixed states). The covariance matrix of
a random variable Z = (X1, ...,Xn;P1, ...,Pn) is

Σ =
∫

R2n
(z − 〈z〉)(z − 〈z〉)T︸ ︷︷ ︸

2n×2n matrix

ρ(z)dz (7)

where the vector 〈z〉 =
∫

R2n zρ(z)dz is the mean value of Z .

We have Σ = ΣT .
In quantum mechanics Σ is always definite positive: Σ > 0
(Narcowich).
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We write

Σ =
(

∆(X ,X ) ∆(X ,P)
∆(P,X ) ∆(P,P)

)
where ∆(X ,X ) etc. are n× n blocks with entries ∆(Xj ,Xk ).
Examples: In the case n = 1 we have

Σ =
(

∆X 2 ∆ (X ,Px )
∆ (Px ,X ) ∆P2x

)
and in the case n = 2

Σ =


∆X 2 ∆ (X ,Y ) ∆ (X ,Px ) ∆ (X ,Py )

∆ (Y ,X ) ∆Y 2 ∆ (Y ,Px ) ∆ (Y ,Py )
∆ (Px ,X ) ∆ (Px ,Y ) ∆P2x ∆ (Px ,Py )
∆ (Py ,X ) ∆ (Py ,Y ) ∆ (Py ,Px ) ∆P2y

 .
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Main observation

We have (Σ+ i h̄
2 J)

∗ = Σ+ i h̄
2 J because J

∗ = JT = −J. It follows that:

Theorem
For a quantum system the condition

Σ+
i h̄
2
J is positive semi-definite (B)

is equivalent to the Robertson—Schrödinger inequalities

(∆Pj )2(∆Xj )2 ≥ ∆(Xj ,Pj )2 + 1
4 h̄

2 (A)

for 1 ≤ j ≤ n.

Proof.

Linear algebra, using the principal minors of the matrix Σ+ i h̄
2 J.
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Example

Assume that n = 1; then the condition

Σ+
i h̄
2
J =

(
∆X 2 ∆ (X ,Px ) + i h̄

2
∆ (Px ,X )− i h̄

2 ∆P2x

)
≥ 0

is equivalent to

det
(

Σ+
i h̄
2
J
)
≥ 0

that is to the Robertson—Schrödinger inequality

∆X 2∆P2x ≥ ∆ (X ,Px )
2 + 1

4 h̄
2.
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Covariance ellipsoid

The covariance ellipsoid of a quantum state is defined by
ΩΣ = {z = (x , p) : 12Σ−1z · z ≤ 1}.

Theorem
We always have c(ΩΣ) ≥ π h̄ and this statemernt is equivalent to the
uncertaintry principle of Robertson—Schrödinger.

Thus we again hav a very strong dependence on Planck’s constant:
decreasing h leads to smaller covariance ellipsoids.
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THANK YOU FOR YOUR KIND ATTENTION!

M. de Gosson (Institute)
Hungarian Academy of Sciences, 10. October 2018 30

/ 30


