### **Photosynthesis**

### **Molecular mechanisms**



### **Global effects**



Michel, Deisenhofer, Huber – Nobel prize 1988  $6H_20 + 6CO_2$  photons  $C_6H_{12}O_6 + 6O_2$ Oxygen-rich atmosphere (+  $O_3$ -shield) Energetic basis of virtually all life on Earth



d<mark>Molecular mechanisms and</mark>

etiects of photosynthesis, and new vistas

Transley

0



Global Effects of Photosynthesis

Mechanisms of Photosynthesis

**Ultrafast Processes - New Vistas at ELI-ALPS** 

### **Global Effects of Photosynthesis**

Mechanisms of Photosynthesis

**Ultrafast Processes - New Vistas at ELI-ALPS** 

### THE ACCUMMULATION OF OXYGEN IN THE ATMOSPHERE



Based on Holland, H.D. (2006) Phil. Trans. R. Soc. B,



### Chlorophyll biosynthesis on a global scale







1.3 x 10<sup>16</sup> nm

60 nm

10<sup>32-34</sup> chlorophylls on Earth

A single photosynthetic membrane representing ~4,000 chlorophylls





In this 1970 picture, an average American family is surrounded by the barrels of oil they consume annually. Now this consumption is about 40% higher.

# EUROPE gives a substantial contribution to anthropogenic carbon imbalance

## **Research Articles**

### Europe's Terrestrial Biosphere Absorbs 7 to 12% of European Anthropogenic CO<sub>2</sub> Emissions

Ivan A. Janssens,<sup>1\*</sup> Annette Freibauer,<sup>2</sup> Philippe Ciais,<sup>3</sup> Pete Smith,<sup>4</sup> Gert-Jan Nabuurs,<sup>5,6</sup> Gerd Folberth,<sup>3</sup> Bernhard Schlamadinger,<sup>7</sup> Ronald W. A. Hutjes,<sup>5</sup> Reinhart Ceulemans,<sup>1</sup> E.-Detlef Schulze,<sup>2</sup> Riccardo Valentini,<sup>8</sup> A. Johannes Dolman<sup>9</sup> biomass and 30% to soils in these inventorybased models (6, 8, 9).

Carbon accumulation rates in forest soils derived in this way are small compared to estimates using a more direct method based on ecological measurements. Comparison of annual litter production with heterotrophic respiration (that is, the C inputs to the soil compared to the outputs), in 11 forests along a north-south gradient across Europe (11) after correction for soil C losses after disturbance during harvest indicates a mean European forest soil C sink of 110 g C m<sup>-2</sup> a<sup>-1</sup>. On the basis of this soil C sink and the value

Science 2003, 300, 1538

Correlation between the main greenhouse gases  $(CO_2 CH_4)$ and the temperature

www.co2.earth/daily-co2 - Oct 5, 2018: 405.44 ppm



http://anthropocenejournal.com/2012/02/21/is-civilization-at-risk-of-collapse/

### CO<sub>2</sub> concentration, temperature, and sea level continue to rise long after emissions are reduced



#### **Intergovernmental Panel on Climate Change**

#### The Impacts of Climate Change on Growth and Development

#### Table 3.1 Highlights of possible climate impacts discussed in this chapter

| Temp<br>rise (°C) | Water                                                                                                                                 | Food                                                                          | Health                                                                                                                                                                                                                           | Land                                                                                  | Environment                                                                                                                                                           | Abrupt and Large-<br>Scale Impacts                                                                                                                                                                   |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1°C               | Small glaciers in the<br>Andes disappear<br>completely,<br>threatening water<br>supplies for 50<br>million people                     | Modest increases in<br>cereal yields in<br>temperate regions                  | At least 300,000<br>people each year<br>die from climate-<br>related diseases<br>(predominantly<br>diarrhoea, malaria,<br>and malnutrition)<br>Reduction in winter<br>mortality in higher<br>latitudes (Northern<br>Europe, USA) | Permafrost thawing<br>damages buildings<br>and roads in parts of<br>Canada and Russia | At least 10% of land<br>species facing<br>extinction<br>(according to one<br>estimate)<br>80% bleaching of<br>coral reefs,<br>including Great<br>Barrier Reef         | Atlantic<br>Thermohaline<br>Circulation starts to<br>weaken                                                                                                                                          |
| 2°C               | Potentially 20 - 30%<br>decrease in water<br>availability in some<br>vulnerable regions,<br>e.g. Southern Africa<br>and Mediterranean | Sharp declines in<br>crop yield in tropical<br>regions (5 - 10% in<br>Africa) | 40 – 60 million more<br>people exposed to<br>malaria in Africa                                                                                                                                                                   | Up to 10 million<br>more people<br>affected by coastal<br>flooding each year          | 15 – 40% of species<br>facing extinction<br>(according to one<br>estimate)<br>High risk of<br>extinction of Arctic<br>species, including<br>polar bear and<br>caribou | Potential for<br>Greenland ice sheet<br>to begin melting<br>irreversibly,<br>accelerating sea<br>level rise and<br>committing world to<br>an eventual 7 m sea<br>level rise<br>Rising risk of abrupt |
|                   |                                                                                                                                       |                                                                               |                                                                                                                                                                                                                                  |                                                                                       |                                                                                                                                                                       | changes to<br>atmospheric<br>circulations, e.g. the                                                                                                                                                  |

monsoon

Rising risk of collapse of West

Rising risk of collapse of Atlantic Thermohaline Circulation

Antarctic Ice Sheet

Stern, N. (2006). "Stern Review on the Economics of Climate Change. Executive Summary"

| Temp<br>rise (°C) | Water                                                                                                                                                                                                     | Food                                                                                                                                                    | Health                                                                                     | Land                                                                        | Environment                                                                                                                                                                                                                                   | Abrupt and Large-<br>Scale Impacts                                                                                                                                                                                                                                                                                                  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3°C               | In Southern Europe,<br>serious droughts<br>occur once every 10<br>years<br>1 - 4 billion more<br>people suffer water<br>shortages, while 1 –<br>5 billion gain water,<br>which may increase<br>flood risk | 150 - 550 additional<br>millions at risk of<br>hunger (if carbon<br>fertilisation weak)<br>Agricultural yields in<br>higher latitudes<br>likely to peak | 1 – 3 million more<br>people die from<br>malnutrition (if<br>carbon fertilisation<br>weak) | 1 – 170 million more<br>people affected by<br>coastal flooding<br>each year | 20 – 50% of species<br>facing extinction<br>(according to one<br>estimate), including<br>25 – 60% mammals,<br>30 – 40% birds and<br>15 – 70% butterflies<br>in South Africa<br>Collapse of Amazon<br>rainforest (according<br>to some models) | Potential for<br>Greenland ice sheet<br>to begin melting<br>irreversibly,<br>accelerating sea<br>level rise and<br>committing world to<br>an eventual 7 m sea<br>level rise<br>Rising risk of abrupt<br>changes to<br>atmospheric<br>circulations, e.g. the<br>monsoon<br>Rising risk of<br>collapse of West<br>Antarctic Ice Sheet |
| 4°C               | Potentially 30 – 50%<br>decrease in water<br>availability in<br>Southern Africa and<br>Mediterranean                                                                                                      | Agricultural yields<br>decline by 15 – 35%<br>in Africa, and entire<br>regions out of<br>production (e.g.<br>parts of Australia)                        | Up to 80 million<br>more people<br>exposed to malaria<br>in Africa                         | 7 – 300 million more<br>people affected by<br>coastal flooding<br>each year | Loss of around half<br>Arctic tundra<br>Around half of all<br>the world's nature<br>reserves cannot<br>fulfill objectives                                                                                                                     |                                                                                                                                                                                                                                                                                                                                     |
|                   |                                                                                                                                                                                                           |                                                                                                                                                         |                                                                                            |                                                                             |                                                                                                                                                                                                                                               | collapse of Atlantic<br>Thermohaline                                                                                                                                                                                                                                                                                                |

Circulation

### "The Stone Age Did Not End Because the World Ran Out of Stones, and the Oil Age Will Not End Because We Run Out of Oil"

Don Huberts, Head of Shell Hydrogen Div., also attributed to (or just qouted by?) Ahmed Zaki Yamani, oil sheikh

"The Stone Age did not end because of a lack of stone. It ended because bronze tools became cheaper."



National Geographic, 2017

Mankind annual consumption ~16 TW-yr, equivalent to one hour of sunlight.

200 TW

~200 Gt CO<sub>2</sub> converted into useful organic molecules, forming the basis for food chains.

Photosynthesis produces 140 Gt of oxygen for us to breathe.

100,000

TW



**Global Effects of Photosynthesis** 

**Mechanisms of Photosynthesis** 

Ultrafast Processes - New Vistas at ELI-ALPS



#### MOVIE ON THE STRUCTURE AND FUNCTION OF PURPLE BACTERIAL PHOTOSYNTHESTIC UNIT. BY NEIL HUNTER AND AND KLAUS SCHULTEN





### SCHEME OF THE LIGHT REACTIONS OF OXYGENIC PHOTOSYNTHETIC ENERGY CONVERSION



### Components of Photosynthetic machinery





Molecular organization and reorganization of thylakoid membranes in vivo

feedback and
regulation by not
well understood
physical
mechanisms



### Block diagram of photosynthesis

| Photophysics<br>Light absorption<br>energy migration | Photochemistry<br>charge<br>separation<br>redox chain<br>NADPH, ATP, O <sub>2</sub> | <b>Biochemistry</b><br><b>CO<sub>2</sub> 'fixation',</b><br><b>Signal</b><br><b>transduction</b><br><b>Short-term</b><br><b>regulation</b> | Physiology<br>synthesis,<br>self-assembly<br>repair<br>transport<br>Regulation | Ontogeny<br>Ecology<br>Evolution       |
|------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------|
| ~ 10 <sup>-15</sup> – 10 <sup>-9</sup> s             | ~ 10 <sup>-12</sup> – 10 <sup>-2</sup> s                                            | ~ 10 <sup>-3</sup> – 10 <sup>3</sup> s                                                                                                     | ~ $10^2 - 10^6$ s                                                              | ~ 10 <sup>5</sup> – 10 <sup>17</sup> s |
| complexes                                            | membrane                                                                            | chioropiast                                                                                                                                | cen, plant, ecosys                                                             | tem, biosphere                         |

**Global Effects of Photosynthesis** 

Mechanisms of Photosynthesis

**Ultrafast Processes - New Vistas at ELI-ALPS** 

## Selected problems on photosynthesis , for' ELI-ALPS

• Motto:

"So right away I found out something about biology [...]: it was very easy to find a question that was very interesting, and that nobody knew the answer to." Richard P. Feynman (1985) Surely You're Joking Mr. Feynman

# LHCII – the most abundant membrane protein in the Biosphere



Liu et al. 2004 Nature

Finely-tuned pigment arrangement:

- Dipole-dipole (excitonic) interactions between pigments
- Enables ultrafast energy transfer via hopping mechanism and/or delocalized excitons
- Prevents quenching
- Dynamic switch between energy harvesting and dissipation – NPQ: nearly 100% quantum efficiency light harvesting function vs ~80% dissipation

The light-harvesting function is regulated

- ΔpH, PsbS protein, Zeaxanthin
- Phosphorylation
- Conformational changes?

Q1: energy migration pathways in LHCII Answer(s) from multidimensional transient fs absorption spectroscopy





2DES is 3<sup>rd</sup> order non-linear spectroscopy



#### 2D DAS of LHCII trimers (Chl b excitation)



Wells KL, Lambrev PH, Zhengyang Z, Garab G, Tan H-S (2014) Phys Chem Chem Phys 16:11640-11645

### 3D optical spectroscopy of LHCII





#### **Pigment clusters in LHCII**



Zhang Z, Lambrev PH, Wells KL, Garab G, Tan H-S – 2015 Nature Communication

#### Q2: The fate of unused (absorbed and dissipated) excitation energy? Light-induced reversible reorganizations (SANS) of isolated thylakoid membranes



Thermo-optically driven (dissipation-assisted light-induced) reversible changes in lipid:LHCII membrane crystals



Hind et al. 2014 Plant and Cell Physiology

Gulbinas et al. 2006 Biochemistry

## A: Ni-Bchl reconstituted bacterial light-harvesting complex LH1)



This system – designed for dissipation – is suitable for transient (fs-ps) IR and Raman experiments to monitor the fate and effect dissipation– also interesting for quantum coherence

### Q3a and Answer-a: Reorganizations in PSII and the OEC



Q3b: Nature of additional light-induced reversible changes? on the same sample detected – as yet only - by fluorescence spectroscopy induced most probably by local transient electric-field and/or T-jump (Magyar et al. Scientific Rep 2018)

# Q4a: can we modulate the charge separation by rectified THz laser field – similar to E<sub>dc</sub>?



Knox and Garab 1982 Photochem Photobiol

Hirori et al (2011) Appl. Phys. Lett. Hebling et al. (2002) Opt Express

### Q4b: can we induce -by rectified THz laser field - charge separation? (THz pump – Vis probe)





Nature Reviews | Molecular Cell Biology

#### Photosystem I crystal Nathan Nelson and coworkers

## How (exactly) the photochemical reaction centers work? – using quantum coherence?



Romero et al. (2017) Quantum design of photosynthesis for bioinspired solar-energy conversion. Nature Review

# Types of quantum coherence – roles in photosynthesis?



Romero et al. Nature 2017

