

Self-Organization in Burning Plasmas

D.J. Campbell

e-mail: campbell-dj@t-online.de

Building Bridges 2018 Academia Europaea Physics & Engineering Section

AE-Barcelona Knowledge Hub, 28-29 November 2018

The ITER experiment, currently under construction, will allow us to study burning plasmas

- Overall programmatic objective:
 - to demonstrate scientific and technological feasibility of fusion energy for peaceful purposes
- Principal goal:
 - to design, construct and operate a tokamak experiment at a scale which satisfies this objective
- ITER is designed to confine a DT plasma in which α-particle heating dominates all other forms of plasma heating
 - \Rightarrow a burning plasma experiment

Fusion energy research focusses on the development of DT burning plasmas

+ 20% of Energy (3.5 MeV)

+ 80% of Energy (14.1 MeV)

$1 \text{ keV} = 1.16 \times 10^7 \text{ K}$

 $^{2}D + ^{3}T \Rightarrow ^{4}He (3.5 \text{ MeV}) + ^{1}n (14.1 \text{ MeV})$

The Tokamak is the most advanced toroidal magnetic confinement configuration

- Inject gas into high vacuum chamber with a strong toroidal magnetic field (e.g. B_T ~ 5 T)
- Induce a toroidal electric field through transformer action, avalanche ionization produces plasma current creating poloidal magnetic field

The Tokamak is the most advanced toroidal magnetic confinement configuration

Combination of toroidal and poloidal fields produces helical field for plasma confinement:

 $\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$

- Inject gas into high vacuum chamber with a strong toroidal magnetic field (e.g. B_T ~ 5 T)
- Induce a toroidal electric field through transformer action, avalanche ionization produces plasma current creating poloidal magnetic field

The conditions required for significant fusion power gain are well understood

Temperature - T _i :	1-2 × 10 ⁸ K (10-20 keV) (~10 × temperature of sun's core)
Density - n _i :	1 × 10 ²⁰ m ⁻³ (~10 ⁻⁶ of atmospheric particle density)
Energy confinement time - τ_{E} : $\tau_{E} = \frac{W_{th}}{P_{loss}} = 3 \frac{\int nkT dV}{P_{loss}}$	<i>few seconds</i> (plasma pulse duration ~1000s)
Fusion power amplification:	$Q = \frac{Fusion Power}{r} \sim n_i T_i \tau_F$

Fusion power amplification: $Q = \frac{Pusion Power}{Input Power} \sim n_i T_i \tau_E$ \Rightarrow Present devices: $Q \leq 1$ \Rightarrow ITER: $Q \geq 10$ \Rightarrow 'Controlled ignition': $Q \geq 30$

DT experiments on existing major facilities have laid the basis for studies of burning plasmas

- Existing experiments have achieved nTτ values
 - ~ 1×10²¹ m⁻³skeV
 - ~ Q_{DT} = 1
- JET and TFTR produced DT fusion powers of >10 MW for ~1 s
- ITER is designed to a scale which should yield Q_{DT} > 10 at a fusion power of ~ 500 MW for ~ 400s, allowing exploration of the burning plasma regime under stationary conditions

Heat and particle transport in fusion plasmas is generally dominated by turbulence

- A well developed 'neoclassical' theory of transport in toroidal plasmas has been derived from analysis of collisional processes:
 - unfortunately, it doesn't do a good job of describing heat and particle transport across the magnetic field
 - \Rightarrow turbulence normally dominates
- Free energy available within the plasma can generate turbulence and magnetohydrodynamic instabilities (mhd) which reduce plasma confinement quality
 - small scale turbulence dominates collisional transport processes
 - physics-based quantitative predictions of transport processes (and global confinement) not yet possible
- Parallel transport (along magnetic field lines) equilibrates heat and particle fluctuations rapidly, but measured values of perpendicular heat transport typically exceed 'neoclassical' predictions by:
 - about an order of magnitude for the ion channel
 - at least two orders of magnitude for the electron channel

Empirical predictions of τ_E are derived from 'scaling' analysis

- Since turbulent transport is difficult to predict quantitatively:
 - we use scaling experiments to predict the level of energy confinement in future experiments such as ITER

A bifurcation in the behavior of $\tau_{\rm E}$ is observed under certain conditions

- It is found that the plasma confinement state (τ_E) can bifurcate:
 - two distinct plasma regimes, a low confinement (L-mode) and a high confinement (H-mode), result

D.J. Campbell, Building Bridges 2018, Barcelona, 28-29 November 2018

A bifurcation in the behavior of $\tau_{\rm E}$ is observed under certain conditions

- It is found that the plasma confinement state (τ_E) can bifurcate:
 - two distinct plasma regimes, a low confinement (L-mode) and a high confinement (H-mode), result
 - this phenomenon has been shown to arise from changes in the plasma flow in a narrow edge region, or pedestal, just a few centimetres wide

Evidence for self-organization in observed in 'profile stiffness'

- Experimental evidence over several decades suggested that plasma profiles in tokamaks increased in 'self-similar' fashion, e.g. electron temperature
- 'Profile stiffness' indicates that there is little change in temperature gradient in response to large changes in heat flux

5.0 = 5.0 5.0 = 1.0 0.5 = 0.5 0.5 = 0.8 MW ECH 0.1 = 0.2 = 0.4 = 0.6 = 0.8 = 1

F Ryter et al, Plasma Phys Control Fusion **43** A323 (2001)

ASDEX Upgrade

'Profile stiffness' reflects threshold behaviour expected for certain turbulent instabilities

- Studies show that experimental heat flux, q_i, rises sharply above a threshold value, or 'critical gradient', R.∇T_i/T_i = R/L_{Ti}
- This behaviour corresponds to that predicted for certain classes of turbulent instabilities
- Degree of 'stiffness' found to depend on plasma rotation implying influence of rotation on instability amplitude

P Mantica et al, Phys Rev Lett **102** 175002 (2009)

Turbulence saturation mechanism also shows evidence for 'self-organization'

- Massive computational simulations of microturbulence have confirmed predictions of analytic theory:
 - Fluctuating E × B driven 'zonal flows' develop non-linearly within the turbulence and produce 'shearing' of the turbulent eddies, reducing plasma transport
 - Zonal flows act as saturation/ selfregulation mechanism of the turbulence via 'shearing' of turbulent eddies
- Existence of zonal flows confirmed in experimental measurements

Z Lin et al, Science 281 1835 (1998)

Simulations of poloidal distribution of fluctuation potential, $e\Phi/T_i$:

- (A) E × B flows included
- (B) E × B flows suppressed

The H-mode bifurcation is understood in terms of E × B turbulence suppression

- The H-mode is correlated with a change in rotational shear at the plasma edge associated with the development of a radial electric field:
 - turbulence is stabilized when the shearing rate for the modes is of order of the mode growth rate:

 $\omega_{E \times B} \sim \gamma_{max}$

 However, debate is ongoing as to whether the shearing process is dominated by zonal flows (resulting from 'Reynolds stress') or velocity shear driven by 'neoclassical' E-field generation (ion orbit loss or pressure gradient)

Summary

- Extensive physics studies of magnetically confined toroidal plasmas have laid the basis for the production and study of burning plasmas in ITER
- Experimental, theoretical and computational analysis of heat and particle transport are unravelling the complexities of turbulence driven transport:
 - self-organization phenomena are critical to an understanding of the nonlinear behaviour of turbulence and its influence on plasma confinement quality

• Self-organization processes are likely to assume even greater importance in the burning plasma regime:

- internal heating by α -particles and the interaction with α -driven mhd modes may introduce additional non-linear aspects of plasma behaviour
- possible modes of plasma operation allowing true steady-state operation of tokamak plasmas may also give rise to self-organization phenomena