

Large and Powerful Sources for Negative Hydrogen lons

Ursel Fantz

... aims to demonstrate that fusion is an energy source for the future!

... is under construction in Europe (France). ... first plasma targeted for 2026.

Main Parameters:		
Total fusion power		500 MW
Q (gain)		≥10
Major radius		6.2 m
Minor radius		2.0 m
Plasma current		15 MA
Toroidal field (at 6.2m)		5.3 T
Plasma volume		837 m ³
Heating and CD power		73 MW
	NBI	33 MW
	ICRF	20 MW
	ECRH	20 MW

⇔ www.iter.org

Neutral beam injection (NBI) for plasma heating and current drive and for diagnostics

Heating beams (50% EU, 50% JA)

- ► **33 MW** injected power from 2 injectors
- ► 3600 s, 1 MeV Deuterium

Diagnostic beam (100% IN)

- ► 3 MW
- ▶ 100 keV Hydrogen

Decision based on the required energy of the particles

Sources for negative hydrogen ions (H⁻, D⁻) for ITER NBI

Size scaling following the modular RF-driven ion source concept

Creation of sufficient negative hydrogen ions at 0.3 Pa

Size scaling following the modular RF-driven ion source concept

The half size ITER source at the ELISE test facility

In operation since 2013

Technologically most demanding: grid system, especially the extraction grid

Main components of the ELISE test facility

Ion source \varnothing = 1.2 m

One RF driver

Progress at ELISE since the very first experiments

Extracted current density [A/m²]

The source performance is limited by the amount of co-extracted electrons!

Towards the required ITER parameters with ELISE

Source performance is probed by short pulse extraction

of 10 s every 3 min (due to lack of cw power supply (3.3 MW)

- Stable negative ion current density (within 10%)
- Strong temporal dynamics of co-extracted electrons

Amount of co-extracted electrons factor 2 – 4 higher in deuterium than in hydrogen

Diagnostics of the beam (1×1 m²)

2018: ELISE achieved ITER parameter in hydrogen!

Stable pulses for 1000 s at 0.3 Pa and at electron/ion ratio below one

Picture of the infrared camera

23.8 A at the calorimeter (ITER value: 23 A)

Symmetric beam with 1.2 MW

View onto the grid system

Next steps & challenges

- Reduction of co-extracted electrons
- Sufficient supply of Cs to the grid
- Steady state power supply
- ► Reliable operation scenarios for ITER

The European roadmap towards ITER NBI

First Plasma in SPIDER: 11 June 2018 at Consorzio RFX, Padua

Inauguration ceremony

© Consorzio RFX Padua

In fact the first plasma of the ITER project !