Phases of Quantum Chromodynamics at Extremes

Chihiro Sasaki
Institute of Theoretical Physics
University of Wroclaw

EM, Weak & Strong: Standard Model

- What is an elementary particle?
 - Minimal composition of ordinary matter
 - No substructure, or substructure unknown

Gauge principle

- Known elementary particles 37
 18 quarks/6 leptons/12 gauge bosons/1 Higgs
- What is the guiding principle?
 - → Symmetry dictates interactions uniquely!
- Gauge structure of SM

$$\rightarrow$$
 SU(2) x U(1) x SU(3)/U(1)em x SU(3)
Weak & EM Strong

What is QCD?

Quantum Chromodynamics (QCD): strong force

- →SU(3) gauge theory: rot. inv. in color space
- Quarks and gluons carry color charges.
- Gluon self-interactions
- Anti-screening of color charges cf. QED: electric charges screened

increasing resolution → smaller color charges higher energy → weaker QCD interaction Asymptotic freedom

Isolated single quark?

Quarks are confined! → composite states

Hadrons: white/singlet under SU(3) rot.

- Baryons (3 quarks)
- Mesons (2 quarks)
- Exotic hadrons

Quark confinement

Phenomenology well described by Coulomb (1/r) + linear (r) potential.

■ separate 2 quarks → color flux tubes

- separate them further \rightarrow exceed threshold energy of $q\overline{q}$ pair creation \rightarrow tubes broken and a meson created.
- cf. a bar magnet

How to "see" quarks?

High-energy particle collisions

Internal structure of a proton: a jet of hadrons

Microscopic picture of nuclear forces

Quark-gluon reactions, nonlinear quantum effects

The proton mass

The ground state is not empty!

Strong int. → quark-antiquark pair formed

- "bare" quark → "dressed" (massive) quark
- VEV qq: order parameter
- → Spontaneous breaking of chiral symmetry

$$LL + RR + LR + RL$$

QCD in low energy

Asymptotic freedom \rightarrow pQCD not valid!

- Lattice gauge theory: MC simulations on a discretized space – first principles calc.
- Integral equations: e.g. Schwinger-Dyson eq.
- Effective theory: relevant d.o.f. & symmetries

HOW TO PROBE THE QCD PHASE TRANSITION?

QCD at high temp./density

- Early Universe: $T \approx 2 \times 10^{12} K$ cf. the core of the Sun: $T \approx 10^7 K$
- Neutron stars: $\rho \approx (5-10)\rho_0$
- Let's heat/compress ordinary matter!

- via QGP formation, "dressed" → "undressed" quark
- Main goal in heavy-ion collision experiments

Quark-Hadron phase transition

- Illustration in a simple model
 - Liberation of d.o.f. $d_{\pi} = 3 \rightarrow d_q + d_g = 40$
- EoS from Lattice QCD: a crossover

$$\chi_{\overline{q}q} = \partial^2 P / \partial m_q^2 \approx V^0 \qquad (V^1 : 1st, V^{2/3} : 2nd)$$

Hot QCD at $\mu \approx 0$

- ☐ Restoration of chiral sym.
 - at Tc=154 MeV
- Deconfinement
- ✓ Conserved charges
- ✓ Comprehensive comparison to Hadronic scenario

□Tdec ≈ Tc

Chiral-confinement interplay in cold dense QCD

How to model dense QCD?

- ☐ Lattice simulations invalid → model analyses
- ☐Good model must possess
 - Correct properties of nuclear ground state
 - ✓ Saturation density, binding energy, compressibility
 - ✓ Rather big chiral-inv. mass m0 ≈500-800 MeV favored [Zschiesche et al. (07), Gallas et al. (11)]
 - Correct degrees of freedom
 - ✓ Nucleons at low density/quarks at high density
 - \rightarrow How to realize the 2nd property?

Quark-nucleon hybrid model

- ☐ How to suppress quarks at low density?
 - >IR/UV cutoff "b" in Fermi dist. functions
 - > from const. "b" to a VEV of a scalar field b
- ☐ Chiral & deconf. p.t. in a single framework

$$\int_0^{\langle b \rangle} dp \, f_N(p; T, \mu) \, \to \, \int_0^0 dp \, f_N(p; T, \mu) = 0$$

$$\int_{\langle b \rangle}^{\infty} dp \, f_Q(p; T, \mu) \, \to \, \int_0^{\infty} dp \, f_Q(p; T, \mu)$$

Onset of different fermions

[Marczenko, Blaschke, Redlich, CS, 2018]

Neutron stars

- $\square \beta$ -equilibrium and charge neutrality
- □Constraints on the mass and compactness of a star → hadronic scenario w/o deconf.quarks

Toward QCD phase diagram

Fate of confinement: hot vs. dense

 \square Non-pert. color-mag. sector \rightarrow perturbative!

← SU(3)c, T >0, μ = 0; Cheng et al., PRD 2008 [mpi = 220 MeV].

→ SU(2)c, T = 0, μ > 0; Bornyakov et al., JHEP 2018 0.6 [mpi = 740 MeV].

 \checkmark m0(μ =0) vs. m0(μ ≠0)

✓ Color-mag.monopoles at $\mu \neq 0$

Summary

Phase diagram: all science fiction?

- ☐What we know is very limited:
 - ✓ Crossover at $\mu \approx 0$, Tc ≈ 154 MeV, remnant of O(4)
 - ✓ Nuclear liquid-gas phase transition, CP
- ☐ Interplay between CSB and confinement
- Modifications of hadrons: mass & width
- ☐ Toward more realistic description of QCD

