On efforts to improve the classical particle dynamics in an external EM field

Martin Formanek martinformanek@email.arizona.edu University of Arizona

Balaton Workshop 2019

June 20, 2019

M. Formanek (U of A department of physics)

Balaton Workshop 2019

"The magnetic gang"

Eur. Phys. J. C (2018) 78:6 https://doi.org/10.1140/epjc/s10052-017-5493-2 THE EUROPEAN PHYSICAL JOURNAL C CrossMark

Regular Article - Theoretical Physics

Relativistic dynamics of point magnetic moment

Johann Rafelski^a, Martin Formanek, Andrew Steinmetz

Department of Physics, The University of Arizona, Tucson, AZ 85721, USA

Received: 1 December 2017 / Accepted: 19 December 2017

All agree: magnetic potential $U = -\mu \cdot \mathcal{B}$

A D M A A A M M

All agree: magnetic potential $U = -\mu \cdot \mathcal{B}$

en.wikipedia.org/wiki/Magnetic_moment

$$\boldsymbol{\mathcal{F}}_{\mathsf{ASG}} = \boldsymbol{\nabla}(\boldsymbol{\mu} \cdot \boldsymbol{\mathcal{B}})$$

M. Formanek (U of A department of physics)

Balaton Workshop 2019

en.wikipedia.org/wiki/Magnetic_moment $\mathcal{F}_{\mathsf{ASG}} = oldsymbol{
abla}(oldsymbol{\mu}\cdot oldsymbol{\mathcal{B}})$

en.wikipedia.org/wiki/Magnetic_dipole

 $oldsymbol{\mathcal{F}}_{\mathsf{GSG}} = (oldsymbol{\mu} \cdot oldsymbol{
abla}) oldsymbol{\mathcal{B}}$

Named after William Gilbert 1544 - 1603

(日) (同) (三) (三)

Gilbertian - magnetic dipole

en.wikipedia.org/wiki/Magnetic_dipole $\mathcal{F}_{ ext{GSG}} = (oldsymbol{\mu} \cdot oldsymbol{
abla}) \mathcal{B}$

en.wikipedia.org/wiki/Magnetic_moment

$$\mathcal{F}_{\mathsf{ASG}} = \nabla(\boldsymbol{\mu} \cdot \boldsymbol{\mathcal{B}})$$

Named after William Gilbert 1544 - 1603

There are no observed magnetic monopoles. Point particles have no current loops. We need a better model!

M. Formanek (U of A department of physics)

Balaton Workshop 2019

June 20, 2019 3/24

The new model should

- Apply to magnetic moment of point-spinning (classical) particle;
- Lead to one force-type only unifying Amperian and Gilbertian forms as equivalent;
- Be consistent in form with torque and spin dynamics:

Definition of torque: $au=oldsymbol{\mu} imes oldsymbol{\mathcal{B}}$

 We want forces to be in covariant relativistic format, that is we seek an extension of the 'Lorentz-Force'

Lorentz Force: EM-Fields $F^{\mu\nu}$, 4-velocity u_{ν} $\frac{du^{\mu}}{d\tau} = \frac{e}{m}F^{\mu\nu}u_{\nu},$

Spin dynamics in textbooks: Thomas-Bergmann-Michel-Telegdi

L. H. Thomas, *"The motion of a spinning electron"*, Nature **117** (1926) 514 V. Bargmann, L. Michel and V. L. Telegdi, *"Precession of the polarization of particles moving in a homogeneous electromagnetic field"*, Phys. Rev. Lett. **2** (1959)

Covariant model of spin dynamics

$$\frac{du^{\mu}}{d\tau} = \frac{e}{m} F^{\mu\nu} u_{\nu},$$

$$\frac{ds^{\mu}}{d\tau} = \frac{e}{m} F^{\mu\nu} s_{\nu} + a \frac{e}{m} \left(F^{\mu\nu} s_{\nu} - \frac{u^{\mu}}{c^{2}} u \cdot F \cdot s \right).$$

where *a* is the $g \neq 2$ anomaly

Balaton Workshop 2019

Spin dynamics in textbooks: Thomas-Bergmann-Michel-Telegdi

L. H. Thomas, *"The motion of a spinning electron"*, Nature **117** (1926) 514 V. Bargmann, L. Michel and V. L. Telegdi, *"Precession of the polarization of particles moving in a homogeneous electromagnetic field"*, Phys. Rev. Lett. **2** (1959)

Covariant model of spin dynamics

$$\frac{du^{\mu}}{d\tau} = \frac{e}{m} F^{\mu\nu} u_{\nu},$$

$$\frac{ds^{\mu}}{d\tau} = \frac{e}{m} F^{\mu\nu} s_{\nu} + a \frac{e}{m} \left(F^{\mu\nu} s_{\nu} - \frac{u^{\mu}}{c^{2}} u \cdot F \cdot s \right).$$

where *a* is the $g \neq 2$ anomaly

 Best way to see the problem: we need a force term valid for neutral particles to account for the Stern-Gerlach force and a torque equation that agrees with form of force.

What is s^{ν} : classical Spin of point particle

Non-rotating 'spin' natural in quantum Dirac equation; this doesn't mean that spin is a quantum property! Spin arises in the context of Minkowski space-time symmetry transformations: **Poincaré group**. There are two **Casimir operators** commuting with all 10 symmetry generators

What is s^{ν} : classical Spin of point particle

Non-rotating 'spin' natural in quantum Dirac equation; this doesn't mean that spin is a quantum property! Spin arises in the context of Minkowski space-time symmetry transformations: **Poincaré group**. There are two **Casimir operators** commuting with all 10 symmetry generators

 \bar{w}^{μ} is <u>axial</u> Pauli-Lubanski 4-vector made out of generators of rotations \bar{J} and boosts \bar{K}

$$\bar{w}_{\mu} = \overline{M}_{\mu\nu}^{*} \bar{p}^{\nu}, \quad \overline{M}_{\mu\nu}^{*} = \begin{pmatrix} 0 & -J_{1} & -J_{2} & -J_{3} \\ \overline{J}_{1} & 0 & -\overline{K}_{3} & \overline{K}_{2} \\ \overline{J}_{2} & \overline{K}_{3} & 0 & -\overline{K}_{1} \\ \overline{J}_{3} & -\overline{K}_{2} & \overline{K}_{1} & 0 \end{pmatrix} \Rightarrow \boxed{\bar{u}_{\mu} \bar{s}^{\mu} = \frac{\bar{p}_{\mu}}{m} \bar{s}^{\mu} = 0}$$

What is s^{ν} : classical Spin of point particle

Non-rotating 'spin' natural in quantum Dirac equation; this doesn't mean that spin is a quantum property! Spin arises in the context of Minkowski space-time symmetry transformations: **Poincaré group**. There are two **Casimir operators** commuting with all 10 symmetry generators

 \bar{w}^{μ} is <u>axial</u> Pauli-Lubanski 4-vector made out of generators of rotations \bar{J} and boosts \bar{K}

$$\bar{w}_{\mu} = \overline{M}_{\mu\nu}^{*} \bar{p}^{\nu}, \quad \overline{M}_{\mu\nu}^{*} = \begin{pmatrix} 0 & -\overline{J}_{1} & -\overline{J}_{2} & -\overline{J}_{3} \\ \overline{J}_{1} & 0 & -\overline{K}_{3} & \overline{K}_{2} \\ \overline{J}_{2} & \overline{K}_{3} & 0 & -\overline{K}_{1} \\ \overline{J}_{3} & -\overline{K}_{2} & \overline{K}_{1} & 0 \end{pmatrix} \Rightarrow \boxed{\bar{u}_{\mu} \bar{s}^{\mu} = \frac{\bar{p}_{\mu}}{m} \bar{s}^{\mu} = 0}$$

Any and each point particle belongs to an irreducible representation of the Poincare group described by the eigenvalues C_1 and C_2 of the Casimir operators. $\sqrt{C_1}$ relates to mass and $\sqrt{C_2/C_1} \equiv |s_1^{\mu}|$ to spin.

Relativistic 'magnetic potential'

Analogical to electric energy $E_{el} = eV = ecA^0$. Since $E_{mag} = -\mu \cdot \mathcal{B}$ In the rest frame of the particle

Need magnetic 'charge' d $E_{mag} = B^0 c d = -\mu \cdot \mathcal{B}, \quad s \ dc = \mu$

Relativistic 'magnetic potential'

Analogical to electric energy $E_{el} = eV = ecA^0$. Since $E_{mag} = -\mu \cdot \mathcal{B}$ In the rest frame of the particle

Need magnetic 'charge' d $E_{mag} = B^0 c d = -\mu \cdot \mathcal{B}, \quad s \ dc = \mu$

We look at a magnetic 4-potential B^{μ} akin to e-4-potential A^{μ}

$$B_{\mu} \equiv F_{\mu\nu}^{*} s^{\nu}, \quad F_{\mu\nu}^{*} \equiv \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} F^{\alpha\beta}, \quad F^{\mu\nu} \equiv \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu}$$

since s_{μ} is axial, B^{μ} is a polar 4-vector.

Relativistic 'magnetic potential'

Analogical to electric energy $E_{el} = eV = ecA^0$. Since $E_{mag} = -\mu \cdot \mathcal{B}$ In the rest frame of the particle

Need magnetic 'charge' d $E_{mag} = B^0 c d = -\mu \cdot \mathcal{B}, \quad s \ dc = \mu$

We look at a magnetic 4-potential B^{μ} akin to e-4-potential A^{μ}

$$B_{\mu} \equiv F^*_{\mu\nu} s^{\nu}, \quad F^*_{\mu\nu} \equiv \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} F^{\alpha\beta}, \quad F^{\mu\nu} \equiv \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu}$$

since s_{μ} is axial, B^{μ} is a polar 4-vector.

$$B^{\mu}$$
 generates additional magnetic force
 $m \frac{du^{\mu}}{d\tau} \equiv F^{\mu}_{ASG} = (eF^{\mu\nu} + G^{\mu\nu}d)u_{\nu}, \quad G^{\mu\nu} \equiv \partial^{\mu}B^{\nu} - \partial^{\nu}B^{\mu}.$

Covariant Amperian and Gilbertian Stern-Gerlach force

The magnetic force will be now identified to be the Amperian form:

ASG force and the rest frame of a particle

$$F^{\mu}_{\text{ASG}} = eF^{\mu\nu}u_{\nu} - u \cdot \partial F^{\star \mu\nu}s_{\nu}d + \partial^{\mu}(u \cdot F^{\star} \cdot s d)$$
$$F^{\mu}_{\text{ASG}}|_{\text{RF}} = \left\{0, \ e\boldsymbol{\mathcal{E}} + \boldsymbol{\nabla}(\boldsymbol{\mu} \cdot \boldsymbol{\mathcal{B}}) - \frac{1}{c^{2}}\boldsymbol{\mu} \times \frac{\partial \boldsymbol{\mathcal{E}}}{\partial t}\right\}$$

Covariant Amperian and Gilbertian Stern-Gerlach force

The magnetic force will be now identified to be the Amperian form:

ASG force and the rest frame of a particle

$$F^{\mu}_{\text{ASG}} = eF^{\mu\nu}u_{\nu} - u \cdot \partial F^{\star \mu\nu}s_{\nu} d + \partial^{\mu}(u \cdot F^{\star} \cdot s d)$$
$$F^{\mu}_{\text{ASG}}|_{\text{RF}} = \left\{0, \ e\mathcal{E} + \nabla(\mu \cdot \mathcal{B}) - \frac{1}{c^{2}}\mu \times \frac{\partial\mathcal{E}}{\partial t}\right\}$$

Another approach that allows us to find the Gilbertian force:

We try to modify the fields $eF^{\mu\nu} \rightarrow \left[\widetilde{F}^{\mu\nu} = eF^{\mu\nu} - s \cdot \partial F^{\star \mu\nu} d\right],$

Covariant Amperian and Gilbertian Stern-Gerlach force

The magnetic force will be now identified to be the Amperian form:

ASG force and the rest frame of a particle

$$F^{\mu}_{\text{ASG}} = eF^{\mu\nu}u_{\nu} - u \cdot \partial F^{\star \mu\nu}s_{\nu} d + \partial^{\mu}(u \cdot F^{\star} \cdot s d)$$
$$F^{\mu}_{\text{ASG}}|_{\text{RF}} = \left\{0, \ e\mathcal{E} + \nabla(\mu \cdot \mathcal{B}) - \frac{1}{c^{2}}\mu \times \frac{\partial\mathcal{E}}{\partial t}\right\}$$

Another approach that allows us to find the Gilbertian force:

We try to modify the fields $eF^{\mu\nu} \rightarrow \left[\widetilde{F}^{\mu\nu} = eF^{\mu\nu} - s \cdot \partial F^{\star\mu\nu} d\right],$

ASG=GSG force and the rest frame of a particle

$$\begin{split} F^{\mu}_{\text{ASG}} &= F^{\mu}_{\text{GSG}} = \left(eF^{\mu\nu} - s \cdot \partial F^{\star \, \mu\nu} \, d \right) u_{\nu} - \mu_0 j^{\gamma} \epsilon_{\gamma\alpha\beta\nu} u^{\alpha} s^{\beta} g^{\nu\mu} \, d \\ F^{\mu}_{\text{GSG}}|_{\text{RF}} &= \left\{ 0, \; e\boldsymbol{\mathcal{E}} + (\boldsymbol{\mu} \cdot \boldsymbol{\nabla}) \boldsymbol{\mathcal{B}} + \mu_0 \boldsymbol{\mu} \times \boldsymbol{j} \right\} \end{split}$$

M. Formanek (U of A department of physics)

Equivalence of point particle magnetic moment forces

Based on this we can write two equivalent generalizations of the Lorentz force

ASG, GSG: two ways to write one and the same thing

$$F^{\mu} = F^{\mu}_{ASG} = eF^{\mu\nu}u_{\nu} - u \cdot \partial F^{\star \mu\nu}s_{\nu} d + \partial^{\mu}(u \cdot F^{\star} \cdot s d)$$

$$F^{\mu} = F^{\mu}_{\rm GSG} = (eF^{\mu\nu} - s \cdot \partial F^{\star \,\mu\nu} \, d) \, u_{\nu} - \mu_0 j^{\gamma} \epsilon_{\gamma\alpha\beta\nu} u^{\alpha} s^{\beta} g^{\nu\mu} \, d$$

Equivalence of point particle magnetic moment forces

Based on this we can write two equivalent generalizations of the Lorentz force

ASG, GSG: two ways to write one and the same thing

$$F^{\mu} = F^{\mu}_{\text{ASG}} = eF^{\mu\nu}u_{\nu} - u \cdot \partial F^{\star \mu\nu}s_{\nu}d + \partial^{\mu}(u \cdot F^{\star} \cdot sd)$$

$$F^{\mu} = F^{\mu}_{\rm GSG} = \left(eF^{\mu\nu} - s \cdot \partial F^{\star \,\mu\nu} \,d\right) u_{\nu} - \mu_0 j^{\gamma} \epsilon_{\gamma\alpha\beta\nu} u^{\alpha} s^{\beta} g^{\nu\mu} \,d$$

 $oldsymbol{
abla}(oldsymbol{\mu}\cdotoldsymbol{\mathcal{B}})-(oldsymbol{\mu}\cdotoldsymbol{
abla})oldsymbol{\mathcal{B}}=oldsymbol{\mu} imes(oldsymbol{
abla} imesoldsymbol{\mathcal{B}})$ with this we obtain

Equivalence of point particle magnetic moment forces

Based on this we can write two equivalent generalizations of the Lorentz force

ASG, GSG: two ways to write one and the same thing

$$F^{\mu} = F^{\mu}_{ASG} = eF^{\mu\nu}u_{\nu} - u \cdot \partial F^{\star \mu\nu}s_{\nu}d + \partial^{\mu}(u \cdot F^{\star} \cdot sd)$$

$$F^{\mu} = F^{\mu}_{\rm GSG} = (eF^{\mu\nu} - s \cdot \partial F^{\star \,\mu\nu} \, d) \, u_{\nu} - \mu_0 j^{\gamma} \epsilon_{\gamma\alpha\beta\nu} u^{\alpha} s^{\beta} g^{\nu\mu} \, d$$

 $oldsymbol{
abla}(oldsymbol{\mu}\cdotoldsymbol{\mathcal{B}})-(oldsymbol{\mu}\cdotoldsymbol{
abla})oldsymbol{\mathcal{B}}=oldsymbol{\mu} imes(oldsymbol{
abla} imesoldsymbol{\mathcal{B}})$ with this we obtain

In rest frame

$$[\boldsymbol{F}_{\text{ASG}} - \boldsymbol{F}_{\text{GSG}}]_{\text{RF}} = \boldsymbol{\mu} \times \left(-\frac{1}{c^2} \frac{\partial \boldsymbol{E}}{\partial t} + \boldsymbol{\nabla} \times \boldsymbol{B} - \mu_0 \boldsymbol{j} \right) = 0 \; .$$

We recognize Maxwell equation in parenthesis

M. Formanek (U of A department of physics)

Balaton Workshop 2019

J. S. Schwinger, *"Spin precession: A dynamical discussion"*, American Journal of Physics **42**, (1974) 510,

Schwinger shows how the TMBT spin dynamics relates to EM force: given $u \cdot s = 0$ he takes proper time τ derivative $\dot{u} \cdot s + u \cdot \dot{s} = 0$ and substituting force for \dot{u} for the case of Lorentz dynamics he argues:

$$u_{\mu}\left(\frac{ds^{\mu}}{d\tau}-\frac{e}{m}F^{\mu\nu}s_{\nu}\right)=0.$$

J. S. Schwinger, *"Spin precession: A dynamical discussion"*, American Journal of Physics **42**, (1974) 510,

Schwinger shows how the TMBT spin dynamics relates to EM force: given $u \cdot s = 0$ he takes proper time τ derivative $\dot{u} \cdot s + u \cdot \dot{s} = 0$ and substituting force for \dot{u} for the case of Lorentz dynamics he argues:

$$u_{\mu}\left(\frac{ds^{\mu}}{d\tau}-\frac{e}{m}F^{\mu\nu}s_{\nu}\right)=0.$$

The general solution satisfying this equation is

$$\frac{ds^{\mu}}{d\tau} = \frac{e}{m} F^{\mu\nu} s_{\nu} + \widetilde{a} \left(g^{\mu\rho} - \frac{u^{\mu}u^{\rho}}{c^2} \right) F_{\rho\nu} s^{\nu}$$

We repeat the same for our generalized Lorentz force.

From now on we use the Gilbertian form of the Lorentz force F_{GSG}^{μ} in vacuum $j^{\mu} = 0$.

The dynamical 'Schwinger' spin equation is obtained as described above

Coupled covariant motion of particle 4-velocity u^{μ} and spin s^{μ}

$$\frac{du^{\mu}}{d\tau} = \frac{1}{m} (eF^{\mu\nu} - s \cdot \partial F^{*\mu\nu} d) u_{\nu}$$
$$\frac{ds^{\mu}}{d\tau} = \frac{e}{m} F^{\mu\nu} s_{\nu} - \frac{d}{m} s \cdot \partial F^{*\mu\nu} s_{\nu} + \tilde{a} \left(g^{\mu\rho} - \frac{u^{\mu} u^{\rho}}{c^2} \right) F_{\rho\nu} s_{\nu}$$

• Reduces to TBMT equations for d = 0 with $\tilde{a} \rightarrow a$

• $dc = e/m + \tilde{a}$

• Dynamics of a neutral particle depends only on d

Dynamical equations for neutral particles

For a neutral particle e = 0 and $d \neq 0$ the equations of motion reduce to

$$rac{du^{\mu}}{d au} = -s \cdot \partial F^{*\mu
u} u_{
u} rac{d}{m} , \ rac{ds^{\mu}}{d au} = -s \cdot \partial F^{*\mu
u} s_{
u} rac{d}{m} + cd \left(g^{\mu
u} - rac{u^{\mu}u^{
u}}{c^2}
ight) F_{
u
ho} s^{
ho} .$$

A D M A A A M M

Dynamical equations for neutral particles

For a neutral particle e = 0 and $d \neq 0$ the equations of motion reduce to

$$rac{du^{\mu}}{d au} = -s \cdot \partial F^{*\mu
u} u_{
u} rac{d}{m} , \ rac{ds^{\mu}}{d au} = -s \cdot \partial F^{*\mu
u} s_{
u} rac{d}{m} + cd \left(g^{\mu
u} - rac{u^{\mu}u^{
u}}{c^2}
ight) F_{
u
ho} s^{
ho} .$$

In the instantaneous co-moving frame

$$\frac{d}{dt}\boldsymbol{v} = \frac{1}{m}(\boldsymbol{\mu}\cdot\nabla)\boldsymbol{\mathcal{B}} ,$$

$$\frac{d}{dt}\boldsymbol{s} = \boldsymbol{\mu} \times \left(\boldsymbol{\mathcal{B}} - \frac{1}{mc}(\boldsymbol{s}\cdot\nabla)\frac{\boldsymbol{\mathcal{E}}}{c}\right) .$$

Dynamical equations for neutral particles

For a neutral particle e = 0 and $d \neq 0$ the equations of motion reduce to

$$rac{du^{\mu}}{d au} = -s \cdot \partial F^{*\mu
u} u_{
u} rac{d}{m} , \ rac{ds^{\mu}}{d au} = -s \cdot \partial F^{*\mu
u} s_{
u} rac{d}{m} + cd \left(g^{\mu
u} - rac{u^{\mu}u^{
u}}{c^2}
ight) F_{
u
ho} s^{
ho} .$$

In the instantaneous co-moving frame

$$\frac{d}{dt}\boldsymbol{v} = \frac{1}{m}(\boldsymbol{\mu}\cdot\nabla)\boldsymbol{\mathcal{B}} ,$$

$$\frac{d}{dt}\boldsymbol{s} = \boldsymbol{\mu} \times \left(\boldsymbol{\mathcal{B}} - \frac{1}{mc}(\boldsymbol{s}\cdot\nabla)\frac{\boldsymbol{\mathcal{E}}}{c}\right) .$$

Non-uniqueness

$$\frac{ds^{\mu}}{d\tau} = \ldots + b\left(g^{\mu\nu} - \frac{u^{\mu}u^{\nu}}{c^2}\right)T_{\nu\rho}s^{\rho} \quad \text{for example} \quad T_{\mu\nu} = (s \cdot \partial)F^*_{\mu\nu}$$

M. Formanek (U of A department of physics)

Or: is it possible using lasers to guide neutral particles?

IOP Publishing

Plasma Physics and Controlled Fusion

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Plasma Phys. Control. Fusion 00 (2019) 000000 (9pp)

Classical neutral point particle in linearly polarized EM plane wave field

Martin Formanek[®], Andrew Steinmetz and Johann Rafelski

Department of Physics, University of Arizona, Tucson, AZ 85719, United States of America

Or: is it possible using lasers to guide neutral particles?

IOP Publishing

Plasma Physics and Controlled Fusion

Plasma Phys. Control. Fusion 00 (2019) 000000 (9pp)

Classical neutral point particle in linearly polarized EM plane wave field

Martin Formanek[®], Andrew Steinmetz and Johann Rafelski

Department of Physics, University of Arizona, Tucson, AZ 85719, United States of America

Plane wave field with profile function f has the 4-potential

$$A^{\mu}(\xi) = \mathcal{A}_0 \varepsilon^{\mu} f(\xi), \quad \xi = \frac{\omega}{c} \hat{k} \cdot x, \quad \hat{k} \cdot \varepsilon = 0, \quad \hat{k}^2 = 0.$$

Or: is it possible using lasers to guide neutral particles?

IOP Publishing

Plasma Physics and Controlled Fusion

Plasma Phys. Control. Fusion 00 (2019) 000000 (9pp)

Classical neutral point particle in linearly polarized EM plane wave field

Martin Formanek®, Andrew Steinmetz and Johann Rafelski

Department of Physics, University of Arizona, Tucson, AZ 85719, United States of America

Plane wave field with profile function f has the 4-potential

$$A^{\mu}(\xi) = \mathcal{A}_0 \varepsilon^{\mu} f(\xi), \quad \xi = \frac{\omega}{c} \hat{k} \cdot x, \quad \hat{k} \cdot \varepsilon = 0, \quad \hat{k}^2 = 0.$$

Integrals of motion:

$$\hat{k} \cdot u(\tau) = \hat{k} \cdot u(0), \quad \varepsilon \cdot u(\tau) = \varepsilon \cdot u(0)$$

 $\hat{k} \cdot u(0) = \gamma_0 c(1 - \beta_0 \cdot \hat{k})$, a fancy way to write the initial Doppler factor.

Squaring the generalized Lorentz force equation gives us a formula for invariant acceleration

$$\dot{u}^{2}(\tau) = -(\hat{k} \cdot s(\tau))^{2}(\hat{k} \cdot u(0))^{2}(f''(\xi(\tau)))^{2}\frac{\mathcal{A}_{0}^{2}d^{2}\omega^{4}}{m^{2}c^{4}}, \quad f'(\xi) \equiv \frac{df}{d\xi}$$

Particle acceleration depends on initial Doppler shifted laser frequency it sees and on alignment of the spin and the wave vector.

Squaring the generalized Lorentz force equation gives us a formula for invariant acceleration

$$\dot{u}^{2}(\tau) = -(\hat{k} \cdot s(\tau))^{2}(\hat{k} \cdot u(0))^{2}(f''(\xi(\tau)))^{2}\frac{\mathcal{A}_{0}^{2}d^{2}\omega^{4}}{m^{2}c^{4}}, \quad f'(\xi) \equiv \frac{df}{d\xi}$$

Particle acceleration depends on initial Doppler shifted laser frequency it sees and on alignment of the spin and the wave vector.

Solution of the dynamical equations

$$\hat{k} \cdot s(\tau) = \hat{k} \cdot s(0) \cos \left[\mathcal{A}_0 d(f(\xi(\tau)) - f(\xi(\tau_0)))\right] - \frac{W(0)}{c} \sin \left[\mathcal{A}_0 d(f(\xi(\tau)) - f(\xi(\tau_0)))\right]$$
$$W(0) = (\hat{k} \cdot u(0))(\varepsilon \cdot s(0)) - (\hat{k} \cdot s(0))(\varepsilon \cdot u(0))$$
$$u^{\mu}(\tau) = u^{\mu}(0) + \frac{1}{2}h^2(\tau)\hat{k}^{\mu}(k \cdot u(0)) + h(\tau)\epsilon^{\mu\nu\alpha\beta}u_{\nu}(0)\hat{k}_{\alpha}\varepsilon_{\beta}$$
$$h(\tau) = \frac{\mathcal{A}_0 d\omega^2}{mc^2} \int_{\tau_0}^{\tau} (\hat{k} \cdot s(\tilde{\tau}))f''(\xi(\tilde{\tau}))d\tilde{\tau}$$

M. Formanek (U of A department of physics)

Geometry of the problem

Initial laboratory frame quantities

$$\begin{split} \hat{k}^{\mu} &= (1, \hat{k}) \\ \varepsilon^{\mu} &= (0, \varepsilon) \\ u^{\mu}(0) &= \gamma_0 c(1, \beta_0) \\ s^{\mu}(0) &= (\beta_0 \cdot s_{0L}, s_{0L}) \end{split}$$

where $s^{\mu}(0)$ is Lorentz boosted $(0, \mathbf{s}_0)$.

Geometry of the problem

Initial laboratory frame quantities

$$\hat{k}^{\mu} = (1, \hat{k})$$

$$\varepsilon^{\mu} = (0, \varepsilon)$$

$$u^{\mu}(0) = \gamma_0 c(1, \beta_0)$$

$$s^{\mu}(0) = (\beta_0 \cdot s_{0L}, s_{0L})$$

where $s^{\mu}(0)$ is Lorentz boosted $(0, \mathbf{s}_0)$.

Conserved quantity $\hat{k} \cdot u(\tau) = \gamma c(1 - \hat{k} \cdot \beta) = \text{const means that particle}$ can lower it's velocity by increasing the angle θ and vice versa. The mechanism is the spin interaction!

$$\cos\theta(\tau) = \frac{G(\tau) + \beta_0 \cos\theta_0}{\sqrt{\beta_0^2 + G^2(\tau) + 2G(\tau)}}, \quad \beta^2(\tau) = 1 - \frac{1 - \beta_0^2}{(1 + G(\tau))^2},$$

$$G(\tau) = \frac{1}{2}h^2(\tau)(1-\hat{\boldsymbol{k}}\cdot\boldsymbol{\beta}_0) + h(\tau)\boldsymbol{\beta}_0\cdot(\hat{\boldsymbol{k}}\times\boldsymbol{\varepsilon})$$

Accelerating relativistic neutrinos

Neutrinos don't have any electric charge but they can have magnetic moment (Dirac vs Majorana neutrinos). The current range for the Dirac neutrino magnetic moment is

$$\mu_{\nu} = 10^{-11} - 10^{-20} \mu_B$$

A D M A A A M M

Accelerating relativistic neutrinos

Neutrinos don't have any electric charge but they can have magnetic moment (Dirac vs Majorana neutrinos). The current range for the Dirac neutrino magnetic moment is

$$\mu_{\nu} = 10^{-11} - 10^{-20} \mu_B$$

The square root of invariant acceleration can be estimated in the units of critical acceleration $a_c = m_{\nu}c^3/\hbar$ and using normalized dimensionless laser amplitude $\hat{a}_0 = \frac{ea_0}{m_c c}$ as

$$\sqrt{\dot{u}^2}[a_c] \propto \hat{a}_0 f''(\xi) rac{E_{
u}[eV](E_{\gamma}[eV])^2}{(m_{
u}[eV])^3} \mu_{
u}[\mu_B] \propto \hat{a}_0 f''(\xi) (10^2 - 10^{-8})$$

for 20 GeV neutrino (produced at CERN) with mass .2 eV, and 1 eV laser source. So in order to reach critical acceleration of unity we need laser parameters in range

$$\hat{a}_0 f''(\xi) \in (10^{-2} - 10^8)$$

Accelerating relativistic neutrinos

- State of the art laser systems $\hat{a}_0 \propto 10^2$
- Classical regime $\lambda_{\gamma}/\lambda_{\nu} \sim 10^{11}$
- How high can be $f''(\xi)$?
- Would be useful for determining neutrino properties magnetic moment, mass.
- the product controlling the precession:

$$\mathcal{A}_0 d \approx 10^{-9} - 10^{-18}$$

no precession for neutrinos.

• The function controlling the direction of the beam $G(\tau)$

$$G(\tau) \approx (10^{-8} - 10^{-17}) f'(\xi(\tau))$$

 Neutrons have much higher magnetic moment - spin precession happens, but they are much heavier - harder to change the trajectory.

M. Formanek (U of A department of physics)

Quantum considerations

Motivation: Comparing the relativistic quantum mechanics models in order to find the best one which could serve as a basis for our classical model.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Quantum considerations

Motivation: Comparing the relativistic quantum mechanics models in order to find the best one which could serve as a basis for our classical model.

Eur. Phys. J. A (2019) 55: 40 THE EUROPEAN DOI 10.1140/epia/i2019-12715-5 PHYSICAL JOURNAL A

Regular Article – Theoretical Physics

Magnetic dipole moment in relativistic quantum mechanics

Andrew Steinmetz^a, Martin Formanek^b, and Johann Rafelski^c

Department of Physics, The University of Arizona, Tucson, AZ, 85721, USA

Received: 4 December 2018 / Revised: 27 January 2019 Published online: 26 March 2019

< ロ > < 同 > < 回 > < 回 >

Quantum considerations

Motivation: Comparing the relativistic quantum mechanics models in order to find the best one which could serve as a basis for our classical model.

Eur. Phys. J. A (2019) 55: 40 THE EUROPEAN DOI 10.1140/epia/i2019-12715-5 PHYSICAL JOURNAL A

Regular Article – Theoretical Physics

Magnetic dipole moment in relativistic quantum mechanics

Andrew Steinmetz^a, Martin Formanek^b, and Johann Rafelski^c

Department of Physics, The University of Arizona, Tucson, AZ, 85721, USA

Received: 4 December 2018 / Revised: 27 January 2019 Published online: 26 March 2019

Two often-used models

DP:
$$\left(\gamma^{\mu}(i\hbar c\partial_{\mu} - eA_{\mu}) - mc^{2} - a\frac{e\hbar}{4mc}\sigma_{\mu\nu}F^{\mu\nu}\right)\psi = 0$$

KGP: $\left((i\hbar c\partial_{\mu} - eA_{\mu})^{2} - m^{2}c^{4} - \frac{g}{2}\frac{e\hbar c}{2}\sigma_{\mu\nu}F^{\mu\nu}\right)\Psi = 0$

Landau levels in the $\boldsymbol{B} = B\hat{\boldsymbol{z}}$ field

DP:
$$E_n = \pm \sqrt{\left(\sqrt{m^2 c^4 + 2e\hbar cB\left(n + \frac{1}{2} - s\right)} - \frac{eB\hbar}{2mc}(g - 2)s\right)^2 + p_z^2 c^2}$$

KGP: $E_n = \pm \sqrt{m^2 c^4 + p_z^2 c^2 + 2e\hbar cB\left(n + \frac{1}{2} - \frac{g}{2}s\right)}$

Notice that DP energy levels explicitly dependend on the anomaly g - 2. Both reduce have the correct non-relativistic limit for particle states

$$E_n - mc^2 = rac{p_z^2}{2m} + rac{e\hbar B}{mc}\left(n+rac{1}{2}-rac{g}{2}s
ight) \;,$$

but their high field behavior is different!

High field behavior

Ground state of electron with n = 0, spin s = 1/2, no momentum in the field direction $p_z = 0$. Magnetic anomaly $g/2 - 1 = \alpha/2\pi$

Dirac Pauli (DP) Merging of the particle (solid) and antiparticle (dashed) states at different values of magnetic fields! Plotted in units of Schwinger critical field

$$B_s = rac{m_e^2 c^2}{e \hbar} = 4.4141 imes 10^9 \ {
m T} \ .$$

KGP can be solved analytically (Niederle & Nikitin, 2006), DP only numerically (Thaller, 1992). In the non-relativistic limit we can compare the transition lines difference proportional to α^6 .

• Lamb shift j = const, l changes (line has $4.4 \times 10^{-6} \text{ eV}$)

				,
	$\Delta E_{KGP}^{2S_{1/2}-2P_{1/2}} \Delta E_{DP}^{2S_{1/2}-2P_{1/2}}$		Difference	•
	$(a+a^2/2)\frac{Z^4\alpha^4}{6}$	$a\frac{Z^4\alpha^4}{6}$	$\frac{\alpha^6 mc^2}{48\pi^2} = 1.6 \times 10$	$^{-10}$ eV
٩	• Fine structure $l = \text{const}, j$ changes (line has 4.5×10^{-5} eV)			
	$\Delta E_{KGP}^{2P_{3/2}-2P_{1/2}}$	$\Delta E_{DP}^{2P_{3/2}}$	$-2P_{1/2}$ Diff	erence
	$(1/2 + a + a^2/2)$	$\frac{Z^4 \alpha^4}{16}$ (1/2 + a)	$(a)\frac{Z^4\alpha^4}{16} \frac{\alpha^6mc^2}{128\pi^2} = 6$	$.1 imes 10^{-11} \text{ eV}$

Both discrepancies get more enhanced in muonic hydrogen or proton - antiproton systems because of the higher mass.

High Z behavior for KGP

- |g| < 2 singularity similar to DP
- |g| > 2 joining of particle states with the same *j* and opposite spin. These states are problematic even in the DP numerical solutions, but they cross instead of merging.
- g = 2 a cusp point character of the solution strongly modified even for a small anomaly.

Future developments

- Correspondence principle between relativistic quantum theory and our classical formulation for a suitable RQM model.
- Explore other RQM models for example Improved KGP from Andrew's paper.
- RQM explanation of the extra gradient terms in the spin dynamics, inclusion of others if necessary.
- Is there a physics principle constraining dynamics of spin? (Establishing uniquely the torque dynamical equation).
- Extension of Pauli Lubanski definition of spin to be consistent with SU(2) symmetry of space. (Now it is *R*³).
- Developping theoretical framework for experiments with neutrinos and neutrons.
- Classical charged particle behavior

My sincere thanks go to:

- Prof. Rafelski and our group members
- Fanfare and GPSC travel awards for offsetting cost of flight tickets
- Everyone at the Wigner institute for their hospitality

Thank you for your attention!

Any questions?