

High-E Nuclear Physics Group → Fuqiang Wang, Wei Xie, DM

Purdue University

- \rightarrow www.purdue.edu
- \sim 2 hrs to Chicago (QM2017)
- \sim 1 hr to Indianapolis (F1 racing)
- \sim 50 000 students
- \sim 150 physics grad students
- \sim 60 physics professors

Outline

- I. AMPT puzzle (hydro vs small cross sections)
- II. Covariant transport and MPC
- III. Understanding AMPT through MPC comparisons
- IV. Summary how small cross sections can work

A Multi-Phase Transport

Lin, Ko et al, PRC72 ('05)

full-fledged multicomponent event generator

AMPT ≈ Lund string model (HIJING) + 2 → 2 parton cascade (ZPC) + hadron transport (ART)

version with "string melting":

- energy density in strings converted to quanta (quarks/antiquarks)
- $\bullet
 ightarrow$ fluctuating initial geometry (random nucleon positions)
- hadronization via coalescence

explains quite well a wide range of A+A observables

ullet using small ~ 3 mb partonic cross sections (!?)

Parton opacity puzzle

DM & Gyulassy, NPA 697 ('02): $v_2(p_T, \chi)$ in Au+Au at RHIC

– Typeset by FoilTEX – D. Molnar @ Balaton WS, Jun 17-21, 2019

radiative $gg \leftrightarrow ggg$ helps (e.g., BAMPS)... but AMPT has pure elastic $2 \rightarrow 2$ perturbative $\sigma_{gg
ightarrow gg}pprox 3$ mb gives $v_2pprox 2\%
ightarrow$ need 15 imes higher opacity

$v_2 pprox 6\%$ with only $\sigma_{qq} = 3$ mb... yet $\sim 15\%$ hadron v_2 (30% centrality)

quark v_2 from AMPT for 200-GeV Au+Au, b=8 fm

for large $\sigma \sim 40-50$ mb, viscous hydro is reachable Huovinen & DM, JPG35 ('08)

AMPT \neq Hydro

AMPT's v_2 comes from "anisotropic escape" He et al, PLB 753 ('15); Li et al, ...

DM et al ('15): AMPT v_2 vs Bjorken au

- for long time, still interacting partons carry nearly zero or even negative v_2
- almost all v_2 is carried by frozen-out partons
- the combined parton v_2 rises than saturates as expected Ko, Zhang, Gyulassy ('99)

AMPT still gets $v_2 \sim 6\%$ for quarks with only 3 mb... but how?

Test: use parton transport MPC to check AMPT's partonic stage

- 1) dynamics issue of parton subdivision
- 2) initconds AMPT vs just minijets

focus on 200-GeV Au+Au at RHIC, fixed b = 8 fm impact parameter

∃ covariant transport codes: ZPC (Zhang), MPC (Molnar), BAMPS (Xu), ...

hydro limit: transport coeffs & rel. times $(\eta \approx 1.2T/\sigma, \tau_{\pi} \approx 1.2\lambda_{tr} ...)$

handles both high or low opacities \rightarrow usable for fluid-to-particle conversion e.g., Teaney, Moore & Dusling; DM & Wolff, ...

thermalizes (in box), fully causal and stable ightarrow can derive hydro eqns e.g., Denicol, Rischke et al

$$\hat{f}_{2 \to 2}^{i} = \frac{1}{2} \sum_{jkl} \int_{234} (f_3^k f_4^l - f_1^i f_2^j) W_{12 \to 34}^{ij \to kl} \qquad \left(\int_j \equiv \int \frac{d^3 p_j}{2E_j} , \quad f_a^k \equiv f^k(x, p_a) \right)$$

(on-shell) phase-space density $f(x, \bar{p}) \equiv \frac{\pi + (\pi + \bar{p})}{d^3 x d^3 p}$

transport equation (BTE):

with, e.g.,

$$p^{\mu}\partial_{\mu}f_{i}(x,p) = C_{2\to2}^{i}[\{f_{j}\}](x,p) + C_{2\leftrightarrow3}^{i}[\{f_{j}\}](x,p) + \cdots$$

Parton subdivision

Nonlocal artifacts: due to action at distance $d < \sqrt{\frac{\sigma}{\pi}}$

subdivision: rescale $f \to f \cdot \ell$, $\sigma \to \sigma/\ell$ ₩ $d \propto \ell^{-1/2}$ local as $\ell
ightarrow \infty$

ZPC could do subdivision, but AMPT runs it with $\ell = 1$

high RHIC opacities: need subdivision $\ell \sim \mathcal{O}(100)$ to remove artifacts in v_2

Initial conditions (Au+Au at RHIC)

Molnar-Gyulassy study: boost-invariant fit to HIJING minijets

- massless gluons
- flat $dN_g/d\eta(b=0) = 1000 \Rightarrow dN/d\eta(b=8 \text{ fm}) \approx 240$
- locally thermal $T_0=0.7$ GeV, $f=N(\vec{x}_T)e^{-m_T\cosh(\eta-y)/T_0}$
- I. constant formation time $au_0 = 0.1$ fm $\ \sim 1/p_T$
- binary collision transverse profile for Au+Au at b = 8 fm
- $d\sigma/dt \propto 1/(t \mu_D^2)^2$, $\sigma_{gg} = 9\pi \alpha_s^2/2\mu_D^2$, with $\mu_D = 0.7$ GeV

AMPT: v2.26t5d6

- massive quarks: $m_u = 5.6$ MeV, $m_d = 9.9$ MeV, $m_s = 199$ MeV
- enhanced $dN_q/d\eta \approx 2.5 \times dN_h/d\eta$ (string melting), nonuniform in η
- formation time distribution
- transverse profile close to wounded nucleons
- sizeable event-by-event fluctuations
- I $\mu_D = 0.45$ GeV, $\alpha_s = 0.33 \Rightarrow \sigma = 3$ mb (quark Casimirs ignored)

– Typeset by FoilTEX – D. Molnar @ Balaton WS, Jun 17-21, 2019

14

Au+Au, b=8 fm - transverse profile dN/d^2x_T for $|\eta_p| < 1$

AMPT

minijets

– Typeset by FoilTEX – D. Molnar @ Balaton WS, Jun 17-21, 2019

Au+Au, b=8 fm - AMPT formation time $\tau = \sqrt{t^2 - z^2}$

Au+Au, b=8fm - AMPT coord rapidity - pseudorapity correlation $\xi \equiv \eta - \eta_p$

– Typeset by FoilTEX – D. Molnar @ Balaton WS, Jun 17-21, 2019

17

large event-by-event fluctuations, $\langle N_{quark} \rangle \approx 4200$

MPC v1.9 comparison strategy: go from simple to complicated

- take boost-invariant minijet study as baseline
- gradually include features of AMPT initconds
- L use wounded nucleon profile, and the same $d\sigma/dt$ as AMPT

– Typeset by FoilTEX – D. Molnar @ Balaton WS, Jun 17-21, 2019

1) set $dN/\eta_p \approx 650$ to match AMPT (at midrapidity), use AMPT $d\sigma/dt$

– Typeset by FoilT_EX – D. Molnar @ Balaton WS, Jun 17-21, 2019

larger $au_0 \Rightarrow$ smaller v_2 (lower density $n \sim 1/ au$, also shorter evolution)

2) match formation time to AMPT average, $\langle \tau_0 \rangle = 0.22$ fm

 $dN/d\eta = 645$ $T_0 = 0.7 \; {
m GeV}$

21

– Typeset by FoilTEX – D. Molnar @ Balaton WS, Jun 17-21, 2019

– Typeset by FoilTEX – D. Molnar @ Balaton WS, Jun 17-21, 2019

less than 5% distortion in $v_2(p_T)$, removable with subdivision $\ell = 5$

So far we...

- matched initial $dN/d\eta$, formation time, transverse profile, interactions
- ruled out too low parton subdivision

(effectively, AMPT runs at subdivision ~ 10 relative to $\sigma \sim 30$ mb, and another factor of ~ 5 would be sufficient)

still, v_2 is too small.

what if we use the exact same initial conditions?

– Typeset by FoilTEX – D. Molnar @ Balaton WS, Jun 17-21, 2019

4) MPC with full AMPT initconds (same \vec{p} , \vec{x} , t for each massless parton)

same result: MPC with $\sigma = 3$ mb ($\ell = 1$) reproduces AMPT's v2

MPC with full AMPT initconds (same \vec{p} , \vec{x} , t) - including correct m_q

26

Missing link: momentum distribution

- for thermal minijets, $\langle p_T \rangle = 3\pi T/4 \approx 1.6$ GeV for $T_0 = 0.7$ GeV

$$\frac{dN}{d^2 p_T dy} = E \frac{dN}{d^3 p} = p_\mu d\sigma^\mu f \propto m_T \tau \cosh \xi \ e^{-m_T \cosh \xi/T}$$

- for AMPT quarks, $\langle p_T \rangle \approx 0.54 \text{ GeV} \Rightarrow T_{eff} = 0.23 \text{ GeV}$ only
- at lower temperature, the cross section is more isotropic (with μ_D fixed)
- \Rightarrow more effective v_2 generation

$$\sigma_{tr} = 4\sigma_{TOT} z(1+z) \left[(2z+1) \ln \left(1 + \frac{1}{z} \right) - 2 \right] , \qquad z \equiv \frac{\mu^2}{s} \approx \frac{\mu^2}{18T^2}$$

so
$$\frac{\sigma_{tr}(T=0.23 \,\text{GeV})}{\sigma_{tr}(T=0.7 \,\text{GeV})} \approx 2.6 \text{ (i)}$$

T = 0.7 GeV captures minijet tail, but string melting plasma is $3 \times$ colder

initial parton spectrum in Au+Au at RHIC, b=8 fm ($|\eta_p| < 1$)

– Typeset by FoilTEX – D. Molnar @ Balaton WS, Jun 17-21, 2019

transport cross section vs Debye mass

large $6 - 7\% v_2$, even slightly higher than from AMPT

4) now set T_{eff} to AMPT $\langle p_T \rangle$

practically same v2 as for constant $au_0 = \langle au_{form} \rangle$

– Typeset by FoilTEX – D. Molnar @ Balaton WS, Jun 17-21, 2019

fit to AMPT $dN/d\tau$:

Summary

sections generates enough elliptic flow (v_2) in Au+Au at RHIC with only 3-mb cross Using the covariant Molnar's Parton Cascade, we pinpoint how AMPT

1) about $2.5 \times$ higher parton densities via string melting, and

2) cold initial plasma with effective temperature $T_{eff} \sim 0.2 - 0.25$ GeV; thus $\mu_D \approx 2T \Rightarrow$ more isotropic partonic cross sections

generated high opacities with large $\sigma \sim 30$ mb, AMPT effectively incorporates a subdivision $\ell \sim 10$ already. were below 5% for $v_2(p_T)$ in Au+Au at RHIC. Compared to studies that Boltzmann transport equation. Artifacts due to lack of parton subdivision The partonic stage of AMPT approximates well solutions of the covariant

 v_2 than that of hadrons. But it makes up for the difference with quark coalescence - the algorithm of which needs to be tested in detail. • With 3 mb cross section, AMPT still generates $2-3 \times$ smaller partonic

Next steps:

- include fluctuations in N_{quark} , initial profile
- L check v_2 distribution, not just event average

Backup slides

up to $\sim 10\%$ deviations - i.e., MPC with $\ell = 1$ is not same as AMPT

On log plot, AMPT and MPC spectra also agree. But on linear scale...