

Lifetime estimation from RHIC Au+Au data

T. Csörgő and G. Kasza

XIV. WPCF and Balaton Workshop June 2019, Dubna and Tihany

Outline

 New, exact solution of relativistic perfect fluid hydro (Csörgő-Kasza-Csanád-Jiang: CKCJ)

- Observables $dN/d\eta$, dN/dy, R_L
- Beauty of hydro: useful formulae
- Fit results
 - Observables Inverse slope fits
 - dN/dŋ fits
 - R_L fits

• Power of analytic hydro: initial energy densities (ε_0)

Perfect fluid hydrodynamics

Conservation of four-momentum:

 $\partial_{\nu}T^{\mu\nu} = 0$

• Energy-momentum tensor (perfect fluid):

 $T^{\mu\nu} = (\varepsilon + p) u^{\mu} u^{\nu} - p g^{\mu\nu}$

• Continuity equation:

$$\partial_{\mu} \left(\sigma u^{\mu} \right) \; = \; 0$$

- Equation of state (EoS): closes the equation system
- Typically: $\varepsilon = \kappa(T) p$, T dependent speed of sound
- In this work $\kappa = const(T)$: the speed of sound (c_s) is replaced by its average value

New, exact solutions of perfect fluid

 $\sigma($

- Rindler coordinates
- Velocity field: $u^{\mu} = (\cosh(\Omega), \sinh(\Omega))$
- 1+1d, parametric exact solution
- If $\kappa \rightarrow 1$ limit: CNC):

Csörgő, Nagy, Csanád solution

 λ : acceleration parameter accelerating solution

$$\begin{aligned} \frac{d}{drXiv} \\ \eta_x(H) &= \Omega(H) - H, \\ \Omega(H) &= \frac{\lambda}{\sqrt{\lambda - 1}\sqrt{\kappa - \lambda}} \arctan\left(\sqrt{\frac{\kappa - \lambda}{\lambda - 1}} \tanh\left(H\right)\right) \\ \sigma(\tau, H) &= \sigma_0 \left(\frac{\tau_0}{\tau}\right)^{\lambda} \mathcal{V}_{\sigma}(s) \left[1 + \frac{\kappa - 1}{\lambda - 1} \sinh^2(H)\right]^{-\frac{\lambda}{2}}, \\ T(\tau, H) &= T_0 \left(\frac{\tau_0}{\tau}\right)^{\frac{\lambda}{\kappa}} \mathcal{T}(s) \left[1 + \frac{\kappa - 1}{\lambda - 1} \sinh^2(H)\right]^{-\frac{\lambda}{2\kappa}}, \\ \mathcal{T}(s) &= \frac{1}{\mathcal{V}_{\sigma}(s)}, \end{aligned}$$

 $(\tau, \eta_x) = \left(\sqrt{t^2 - r_z^2}, \frac{1}{2} \ln \left[\frac{t + r_z}{t - r_z}\right]\right)$

$$s(\tau, H) = \left(\frac{\tau_0}{\tau}\right)^{\lambda-1} \sinh(H) \left[1 + \frac{\kappa - 1}{\lambda - 1} \sinh^2(H)\right]^{-\lambda/2}$$

Csörgő, Kasza, Csanád, Jiang:

New, exact solutions of perfect fluid

Pseudorapidity density

3

• Rapidity density (embedded to 1+3 d space):

$$\frac{dN}{dy} \approx \frac{dN}{dy}\Big|_{y=0} \cosh^{-\frac{1}{2}\alpha(\kappa,\lambda)-1}\left(\frac{y}{\alpha(1,\lambda)}\right) \exp\left(-\frac{m}{T_{\text{eff}}}\left[\cosh^{\alpha(\kappa,\lambda)}\left(\frac{y}{\alpha(1,\lambda)}\right)-1\right]\right)$$

• Lorentzian average p_T as a function of y:

$$\bar{p}_T(y) \approx \sqrt{T_{\text{eff}}^2 + 2mT_{\text{eff}}} \left(1 + \frac{\alpha(\kappa)}{2\alpha(1)^2} \frac{T_{\text{eff}} + m}{T_{\text{eff}} + 2m} y^2\right)^{-1}$$

 $\alpha(\kappa) = \frac{2\lambda - \kappa}{\lambda - \kappa}$

T_{eff}: effective temperature

• Pseudorapidity density: parametric curve

$$\left(\eta_p(y), \frac{dN}{d\eta_p}(y)\right) = \left(\frac{1}{2}\log\left[\frac{\bar{p}(y) + \bar{p}_z(y)}{\bar{p}(y) - \bar{p}_z(y)}\right], \frac{\bar{p}(y)}{\bar{E}(y)}\frac{dN}{dy}\right)$$

• Four fit parameters: κ , λ , T_{eff} , $dN/dy|_{y=0}$

arXiv:1805.01427 arXiv:1806.06794

Rapidity density

$$\frac{dN}{dy} \approx \frac{dN}{dy} \bigg|_{y=0} \cosh^{-\frac{1}{2}\alpha(\kappa,\lambda)-1} \left(\frac{y}{\alpha(1,\lambda)}\right) \exp\left(-\frac{m}{T_{\text{eff}}} \left[\cosh^{\alpha(\kappa,\lambda)} \left(\frac{y}{\alpha(1,\lambda)}\right) - 1\right]\right)$$

- Rapidity density: depends on 4 hydro parameters (κ , λ , T_{eff} , $dN/dy|_{y=0}$)
- Near midrapidity, in leading order: a Gaussian

$$\frac{dN}{dy} \approx \frac{\langle N \rangle}{\left(2\pi\Delta^2 y\right)^{1/2}} \exp\left(-\frac{y^2}{2\Delta^2 y}\right)$$

From 4 hydro parameters (κ , λ , $\langle N \rangle$, T_{eff}) \rightarrow only 2 fit parameters ($\langle N \rangle$, Δy) Beautiful example of <u>hydrodynamical</u> <u>scaling</u> behaviour!

Gaussian width:
$$\frac{1}{\Delta^2 y} = (\lambda - 1)^2 \left[1 + \left(1 - \frac{1}{\kappa} \right) \left(\frac{1}{2} + \frac{m}{T_{\text{eff}}} \right) \right]$$

Midrapidity density:

$$\left.\frac{dN}{dy}\right|_{y=0} = \frac{\langle N \rangle}{(2\pi\Delta^2 y)^{\frac{1}{2}}}$$

Pseudorapidity density

$$\left(\eta_p(y), \frac{dN}{d\eta_p}(y)\right) = \left(\frac{1}{2}\log\left[\frac{\bar{p}(y) + \bar{p}_z(y)}{\bar{p}(y) - \bar{p}_z(y)}\right], \frac{\bar{p}(y)}{\bar{E}(y)}\frac{dN}{dy}\right)$$

- Pseudorapidity density: parametric curve (κ , λ , T_{eff} , $dN/dy|_{v=0}$)
- Near midrapidity, up to leading order

$$\frac{dN}{d\eta_p} \approx \frac{\langle N \rangle}{\left(2\pi\Delta^2 y\right)^{1/2}} \frac{\cosh(\eta_p)}{\left(D^2 + \cosh^2(\eta_p)\right)^{1/2}} \exp\left(-\frac{y^2}{2\Delta^2 y}\right) \bigg|_{y=y(\eta_p)}$$

Midrapidity densi

From 4 hydro parameters (κ , λ , $\langle N \rangle$, T_{eff}) \rightarrow 3 fit parameters (D, <N>, Δ y) Beautiful example of hydrodynamical scaling behaviour!

Gaussian width:

drapidity density:

$$\frac{dN}{dy}\Big|_{y=0} = \frac{\langle N \rangle}{(2\pi\Delta^2 y)^{\frac{1}{2}}}$$

$$D^2 = \frac{m^2}{M^2} \text{ Depression parameter:}$$

$$\frac{1}{\Delta^2 y} = (\lambda - 1)^2 \left[1 + \left(1 - \frac{1}{\kappa}\right) \left(\frac{1}{2} + \frac{m}{T_{\text{eff}}}\right) \right]$$

ALICE Pb+Pb data at 5 TeV

Fits at RHIC, $\sqrt{s_{NN}} = 20-200 \text{ GeV}$

Powerful 3-parameter hydro formula. CL "too good"

CMS p+p dn/d η fits, 7, 8, 13 TeV

CMS Xe+Xe data, 5.44 TeV

Observables - HBT R_L

• For a 1+1 d relativistic source (LCMS):

$$R_L^2 = \cosh^2(\eta_x^s) \tau_f^2 \Delta \eta_x^2 + \sinh^2(\eta_x^s) \Delta \tau^2$$

• $(\eta_{x_{f}}^{s}, \tau_{f})$ saddle point:

Observables - HBT R_L

• For a 1+1 d relativistic source (LCMS):

$$R_L^2 = \cosh^2(\eta_x^s) \tau_f^2 \Delta \eta_x^2 + \sinh^2(\eta_x^s) \Delta \tau^2$$

- $(\eta_{x_{f}}^{s}, \tau_{f})$ saddle point
- CKCJ solutions are limited to a narrow rapidity interval around $\eta_x \approx 0$
- At midrapidity:

 $R_L = \tau_f \Delta \eta_x$

$$R_L = \tau_f \Delta \eta_x \approx \frac{\tau_f}{\sqrt{\lambda \left(2\lambda - 1\right)}} \sqrt{\frac{T_f}{m_T}}$$

hep-ph/9411307

• Fitted to PHENIX and STAR $\rm R_{L}$ data

- From fits to $dN/d\eta$: λ , T_{eff} are known
- τ_f is the only fit parameter

HBT R₁ fits

$$R_L = \tau_f \Delta \eta_x \approx \frac{\tau_f}{\sqrt{\lambda \left(2\lambda - 1\right)}} \sqrt{\frac{T_f}{m_T}}$$

arXiv:1811.09990

arXiv:1403.4972

arXiv:nucl-ex/0201008

arXiv:nucl-ex/0401003

- Effective temperature: need centrality dependence
- Linear model is fitted to m₀ vs T_{eff} PHENIX data (130 and 200 GeV)
- T_f is fixed, independent from centrality

- Effective temperature: need centrality dependence
- Linear model is fitted to $m_0 vs T_{eff}$ PHENIX data (130 and 200 GeV)
- If m₀ vs T_{eff} data is not available (62.4 GeV):
 - \circ fit to p_T spectra or... \longrightarrow we chose this
 - \circ T_{eff} can be obtained by dN/dŋ fits

- Effective temperature: need centrality dependence
- Linear model is fitted to m₀ vs T_{eff} PHENIX data (130 and 200 GeV)
- If m₀ vs T_{eff} data is not available (62.4 GeV):

Fit function was from:

- Effective temperature: need centrality dependence
- Linear model is fitted to $m_0 vs T_{eff}$ PHENIX data (130 and 200 GeV)
- If m₀ vs T_{eff} data is not available (62.4 GeV):

A new feature of STAR p_T spectras

- The p_T spectras of pions are fitted at
 - 7.7, 11.5, 19.6, 27, 39, 62.4, 130 and 200 GeV
- Three different centrality class: 0-5%, 30-40%, 70-80%
- Interesting behaviour of T_{eff}: <u>local minimum at 62.4 GeV</u>

Initial energy density

• From the CKCJ solution ε_0 is exactly calculated:

$$\varepsilon_0(\kappa,\lambda) = \varepsilon_0^{Bj} \left(2\lambda - 1\right) \left(\frac{\tau_f}{\tau_0}\right)^{\lambda\left(1 + \frac{1}{\kappa}\right) - 1}$$

<u>arXiv:1806.1130</u>

- $\lambda \rightarrow 1$ limit: EoS dependence is not vanishing, Bjorken's formula can be reobtained only in the case of dust
- The EoS dependent correction takes into account the work of the pressure
- In λ =1 case, the EoS dependence was found first by Gorenstein, Sinyukov and Zhdanov (before Bjorken!) Phys.Lett. 71B (1977) 199-202
- Now, the fundamental correction to ϵ_0^{Bj} is also known
- λ and τ_f are obtained by fits $\rightarrow \tau_0$ dependence

Exact result of initial energy density

• From the CKCJ solution ε_0 is exactly calculated:

$$\varepsilon_0(\kappa,\lambda) = \varepsilon_0^{Bj} (2\lambda - 1) \left(\frac{\tau_f}{\tau_0}\right)^{\lambda\left(1 + \frac{1}{\kappa}\right) - 1}$$

- $\lambda \rightarrow 1$ limit: EoS dependence is not vanishing, Bjorken's formula can be reobtained only in the case of dust
- The EoS dependent correction takes into account the work of the pressure
- In λ=1 case, the EoS dependence was found first by Gorenstein, Sinyukov and Zhdanov (before Bjorken!)
 Phys.Lett. 71B (1977) 199-202
- Now, the fundamental correction to ε_0^{Bj} is also known
- λ and τ_f are obtained by fits $\rightarrow \tau_0$ dependence

17

arXiv:1806.11309

Exact result of initial energy density

• From the CKCJ solution ε_0 is exactly calculated:

$$\varepsilon_0(\kappa,\lambda) = \varepsilon_0^{Bj} (2\lambda - 1) \left(\frac{\tau_f}{\tau_0}\right)^{\lambda\left(1 + \frac{1}{\kappa}\right) - 1}$$

- $\lambda \rightarrow 1$ limit: EoS dependence is not vanishing, Bjorken's formula can be reobtained only in the case of dust
- The EoS dependent correction takes into account the work of the pressure
- In λ=1 case, the EoS dependence was found first by Gorenstein, Sinyukov and Zhdanov (before Bjorken!)
- Now, the fundamental correction to ε_0^{Bj} is also known
- λ and τ_f are obtained by fits $\rightarrow \tau_0$ dependence

<u>Bjorken's formula</u> can be applied only for <u>order of magnitude estimations</u>!

arXiv:1806.11309

Initial energy densities

- Only the thermalized energy is included
- Indication for an increasing initial energy density with decreasing colliding energy?
- Suggest a non-monotonic behaviour of the initial energy density with \sqrt{s}

arXiv:1811.09990

Exact result of initial energy density

- Only the thermalized energy is included
- Indication for an *increasing initial energy density with decreasing colliding energy*?
- Suggest a non-monotonic behaviour of the initial energy density with \sqrt{s}

arXiv:1811.09990

Exact result of initial energy density

- Only the thermalized energy is included
- Indication for an increasing initial energy density with decreasing colliding energy?
- Suggest a <u>non-monotonic behaviour</u> of the initial energy density with \sqrt{s}

arXiv:1811.09990

Cross-checks, initial energy density

- Only the thermalized energy is included
- Indication for an increasing initial energy density with decreasing colliding energy?
- Suggest a <u>non-monotonic behaviour</u> of the initial energy density with \sqrt{s}
- At LHC energies, our method predicts greater $\epsilon_{\rm 0}$
- Cross-check with 1+3 d numerical hydro, IQCD EoS:

Surprisingly good agreement in Au+Au 200 GeV!

Bivariate function: non-monotonic, with monotonic projections

Initial energy density

Exact result of initial energy density

- Only the thermalized energy is included
- Indication for an increasing initial energy density with decreasing colliding energy?
- Suggest a <u>non-monotonic behaviour</u> of the initial energy density with \sqrt{s}

 Need to extend the studies to <u>lower energies</u> (RHIC BES I, BES II, SPS and LHC data)
 Need to investigate the possibilities of <u>shock waves</u>
 Need to extend the CKCJ solution to <u>1+3 dimensions</u>
 Need to investigate the <u>fit range iteration</u>

the corrections to Bjorken's initial energy estimate

Summary

- New, exact solutions of hydrodynamics: CKCJ solutions
- Powerful Gaussian formula for dN/dŋ (more general than we think?)
- Initial energy density is calculated exactly Bjorken's estimate ignores the first law of thermodynamics
- Novel method to obtain the lifetime-parameter τ_f evaluation of T_{eff}, dN/dη fits, R_L fits

viscous hydro?

- τ₀ dependence of ε₀ can be calculated: surprising result: non-monotonic behaviour of ε₀(s_{NN})?
- Further investigations are needed: lower energies, extensions of CKCJ model, fit range iteration

Amazing power of analytic hydro

Thank you for your attention!

Backup slide

Table 2. Initial energy density estimation from [48] by Bjorken's formula ε_0^{Bj} , and the conjectured values of $\varepsilon_0^{conj}(\kappa, \lambda)$, evaluated for $\tau_0 = 1$ fm/c. These values also indicate the non-monotonic behaviour of the initial energy density as a function of $\sqrt{s_{NN}}$, the center of mass energy of colliding nucleon pairs.

$\epsilon_0 [\text{GeV}/\text{fm}^3]$	ε_0^{Bj}	$\varepsilon_0^{CNC}(\lambda)$	$\varepsilon_0^{conj}(\kappa,\lambda)$	$\varepsilon_0(\kappa,\lambda)$
Au+Au at 130 GeV, 6-15 %	4.1 ± 0.4	14.8 ± 2.2	11.2 ± 1.8	11.9 ± 0.5
Au+Au at 200 GeV, 6-15 %	4.7 ± 0.5	12.2 ± 2.3	9.9 ± 1.6	9.8 ± 0.4
Pb+Pb at 2.76 TeV, 10-20 %	10.1 ± 0.3	14.1 ± 0.5	13.3 ± 0.6	