Two-particle angular correlations in Pb-Pb collisions from ALICE

Monika Varga-Kofarago MTA Wigner RCP

on behalf of the ALICE Collaboration

17th – 21st June 2019 Balaton Workshop 2019

Phys. Rev. Lett. 119, 102301, 2017; Phys. Rev. C 96, 034904, 2017; Nucl. Phys. A982 (2019) 363-366

This work has been supported by the Hungarian NKFIH/OTKA K 120660 grant.

Physics motivation

- In heavy-ion collisions high $p_{\rm T}$ partons are produced
- They propagate through the medium and lose energy
- They hadronize into jets
- Goal: study interaction of jets with medium
- Angular correlation measurements
 - Analysis done on a statistical basis
 - Subtraction of large fluctuating background possible
 - Lower $p_{\rm T}$ measurements possible
 - Complementary tool to jet reconstruction

ALICE event display with jet

ALTC

Physics motivation

- ullet In heavy-ion collisions high p_{T} partons are produced
- They propagate through the medium and lose energy
- They hadronize into jets
- Goal: study interaction of jets with medium
- Angular correlation measurements
 - Analysis done on a statistical basis
 - Subtraction of large fluctuating background possible
 - Lower p_{T} measurements possible
 - Complementary tool to jet reconstruction
- Interactions can change the jet fragmentation pattern
 - The p_{T} distribution of fragments
 - Their angular distribution
- Modification of the jet-peak has been seen by STAR

STAR Collaboration, Phys. Rev. C85 (2012) 014903

ALTCI

Theoretical aspects

- $\bullet\,$ Larger width in $\Delta\eta$ than in $\Delta\varphi$
 - Interaction with longitudinal flowing medium

Romatschke, Phys. Rev. C75 (2007) 014901 Armesto, Salgado, Wiedemann, Phys. Rev. C72 (2005) 064910 Armesto, Salgado, Wiedemann, PRL 93,242301 (2004)

• Interaction with turbulent color fields

Majumder, Muller, Bass, Phys. Rev. Lett. 99 (2007) 042301

• Double hump-shape in the energy distribution of the jet Armesto, Salgado, Wiedemann - PRL 93,242301 (2004)

Two-particle correlations – introduction

- Pb–Pb and pp data
- $\sqrt{s_{\rm NN}}=$ 2.76 TeV and 5.02 TeV
- Trigger and associated particle
- Azimuthal ($\Delta arphi$) difference
- Pseudorapidity ($\Delta\eta$) difference

Two-particle correlations – definitions

Per trigger yield:

$$\frac{1}{N_{trig}}\frac{\mathrm{d}^2 N_{assoc}}{\mathrm{d}\Delta\eta\mathrm{d}\Delta\varphi} = \frac{S(\Delta\eta,\Delta\varphi)}{M(\Delta\eta,\Delta\varphi)}$$

- Acceptance correction by mixed event:
 - $M(\Delta \eta, \Delta \varphi)$
 - Correlation histogram is calculated in both same and mixed event
 - Division of the two removes detector effects and inefficiencies
- ullet $p_{
 m T}$ bins between 1 GeV/c and 8 GeV/c
- All charged particles

Two-particle correlations – definitions

Per trigger yield:

$$\frac{1}{N_{trig}}\frac{\mathrm{d}^2 N_{assoc}}{\mathrm{d}\Delta\eta\mathrm{d}\Delta\varphi} = \frac{S(\Delta\eta,\Delta\varphi)}{M(\Delta\eta,\Delta\varphi)}$$

- Acceptance correction by mixed event:
 - $M(\Delta \eta, \Delta \varphi)$
 - Correlation histogram is calculated in both same and mixed event
 - Division of the two removes detector effects and inefficiencies
- ullet $p_{
 m T}$ bins between 1 GeV/c and 8 GeV/c
- All charged particles

• Histograms background subtracted for illustration

• Shape is similar in pp and peripheral collisions

Monika Varga-Kofarago

Two-particle angular correlations in Pb-Pb collisions from ALICE

- Histograms background subtracted for illustration
- Peak: broader and asymmetric in central collisions

Monika Varga-Kofarago

Two-particle angular correlations in Pb-Pb collisions from ALICE

- Histograms background subtracted for illustration
- Depletion around $(\Delta arphi, \Delta \eta) = (0,0)$ in central collisions at low p_{T}

Monika Varga-Kofarago

Two-particle angular correlations in Pb-Pb collisions from ALICE

Monika Varga-Kofarago

Extraction of the near-side peak width

- The near-side is fitted to characterize its shape evolution
- Fit function: background + Generalized Gaussian
 - Background:

$$C_1 + \sum_{n=2}^N 2V_n \cos(n\Delta\varphi)$$

• Generalized Gaussian:

 $\gamma = 2$ Gaussian

$$N \times e^{-\left|\frac{d\varphi}{w_{\varphi}}\right|^{\gamma_{\varphi}} - \left|\frac{d\eta}{w_{\eta}}\right|^{\gamma_{\eta}}} \implies N = C_2 \times \frac{\gamma_{\varphi}\gamma_{\eta}}{4w_{\varphi}w_{\eta}\Gamma\left(\frac{1}{\gamma_{\varphi}}\right)\Gamma\left(\frac{1}{\gamma_{\eta}}\right)}$$

$$\gamma = 1: \text{ Exponential}$$

- Characterize peak by variance of generalized Gaussian: $\sigma^2 = \frac{w^2 \Gamma(3/\gamma)}{\Gamma(1/\gamma)}$
- No attempt to give physical meaning to parameters of the generalized Gaussian
- Some bins around $(\Delta \varphi, \Delta \eta) = (0, 0)$ are excluded from the fit

Fitting illustration

ALI-PUB-11281

LI-PUB-112916

ALI-PUB-112920

Fitting illustration

Monika Varga-Kofarago

Two-particle angular correlations in Pb-Pb collisions from ALICE

Phys. Rev. Lett. 119, 102301 (2017) Phys. Rev. C 96, 034904 (2017)

ullet Width in $\Delta arphi$ in 50–80% is equal to width in pp

Phys. Rev. Lett. 119, 102301 (2017) Phys. Rev. C 96, 034904 (2017)

- Width in $\Delta \varphi$ in 50–80% is equal to width in pp
- Small increase at low ${m p}_{
 m T}$ in $\Delta arphi$ with centrality

Monika Varga-Kofarago

Phys. Rev. Lett. 119, 102301 (2017) Phys. Rev. C 96, 034904 (2017)

Phys. Rev. Lett. 119, 102301 (2017) Phys. Rev. C 96, 034904 (2017)

ullet Width in $\Delta\eta$ in 50–80% is already larger than in pp

Phys. Rev. Lett. 119, 102301 (2017) Phys. Rev. C 96, 034904 (2017)

ullet Very pronounced increase at low $oldsymbol{p}_{\mathrm{T}}$ in $\Delta\eta$

Monika Varga-Kofarago

Two-particle angular correlations in Pb-Pb collisions from ALICE

Width of the peak at $\sqrt{s_{NN}} = 5.02$ TeV

Width of the peak at $\sqrt{s_{NN}} = 5.02$ TeV

• Peak width in peripheral Pb-Pb equals to width in pp collisions

Width of the peak at $\sqrt{s_{NN}} = 5.02$ TeV

- Peak width in peripheral Pb-Pb equals to width in pp collisions
- Similar broadening towards central events as at $\sqrt{s_{NN}}=2.76~{
 m TeV}$

Comparison to the STAR experiment

AMPT (A Multi-Phase Transport model) [1]

- Models non-equilibrium many-body dynamics
- Has collective effects through:
 - Partonic interactions
 - Hadronic interactions

[1] Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal, Phys.Rev. C72 (2005) 064901

AMPT (**A** Multi-Phase Transport model) [1]

- Models non-equilibrium many-body dynamics
- Has collective effects through:
 - Partonic interactions
 - Hadronic interactions

Settings:

- string melting off, hadronic rescattering on
- string melting on, hadronic rescattering on
- string melting on, hadronic rescattering off

Initial stage

1

[1] Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal, Phys.Rev. C72 (2005) 064901

AMPT (**A** Multi-Phase Transport model) [1]

- Models non-equilibrium many-body dynamics
- Has collective effects through:
 - Partonic interactions
 - Hadronic interactions

Settings:

- string melting off, hadronic rescattering on
- string melting on, hadronic rescattering on
- string melting on, hadronic rescattering off

[1] Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal, Phys.Rev. C72 (2005) 064901

AMPT (**A** Multi-Phase Transport model) [1]

- Models non-equilibrium many-body dynamics
- Has collective effects through:
 - Partonic interactions
 - Hadronic interactions

Settings:

- string melting off, hadronic rescattering on
- string melting on, hadronic rescattering on
- string melting on, hadronic rescattering off

[1] Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal, Phys.Rev. C72 (2005) 064901

AMPT (**A** Multi-Phase Transport model) [1]

- Models non-equilibrium many-body dynamics
- Has collective effects through:
 - Partonic interactions
 - Hadronic interactions

Settings:

- string melting off, hadronic rescattering on
- string melting on, hadronic rescattering on
- string melting on, hadronic rescattering off

[1] Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal, Phys.Rev. C72 (2005) 064901

• Ratio of width in central over peripheral: $\sigma_{\Delta\varphi}^{CP} = \frac{\sigma_{\Delta\varphi}(0-10\%)}{\sigma_{\Delta\varphi}(50-80\%)}$, $\sigma_{\Delta\eta}^{CP} = \frac{\sigma_{\Delta\eta}(0-10\%)}{\sigma_{\Delta\eta}(50-80\%)}$

Phys. Rev. Lett. 119, 102301 (2017) Phys. Rev. C 96, 034904 (2017)

• Ratio of width in central over peripheral: $\sigma_{\Delta\varphi}^{CP} = \frac{\sigma_{\Delta\varphi}(0-10\%)}{\sigma_{\Delta\varphi}(50-80\%)}, \sigma_{\Delta\eta}^{CP} =$

• Ratio of width in central over peripheral: $\sigma_{\Delta\varphi}^{CP} = \frac{\sigma_{\Delta\varphi}(0-10\%)}{\sigma_{\Delta\varphi}(50-80\%)}, \ \sigma_{\Delta\eta}^{CP} = \frac{\sigma_{\Delta\eta}(0-10\%)}{\sigma_{\Delta\eta}(50-80\%)}$

ullet Broadening most significant at intermediate p_{T}

• Ratio of width in central over peripheral: $\sigma_{\Delta\varphi}^{CP} = \frac{\sigma_{\Delta\varphi}(0-10\%)}{\sigma_{\Delta\varphi}(50-80\%)}, \ \sigma_{\Delta\eta}^{CP} = \frac{\sigma_{\Delta\eta}(0-10\%)}{\sigma_{\Delta\eta}(50-80\%)}$

Phys. Rev. Lett. 119, 102301 (2017) Phys. Rev. C 96, 034904 (2017)

• Ratio of width in central over peripheral: $\sigma_{\Delta\varphi}^{CP} = \frac{\sigma_{\Delta\varphi}(0-10\%)}{\sigma_{\Delta\varphi}(50-80\%)}, \ \sigma_{\Delta\eta}^{CP} = \frac{\sigma_{\Delta\eta}(0-10\%)}{\sigma_{\Delta\eta}(50-80\%)}$

• Small difference between models in $\Delta \varphi$, $\Delta \eta$ more constraining

• String melting off, hadronic rescattering on describes data best

Phys. Rev. Lett. 119, 102301 (2017) Phys. Rev. C 96, 034904 (2017)

 $\frac{\sigma_{\Delta \varphi}(0-10\%)}{\sigma_{\Delta \varphi}(50-80\%)}, \ \sigma_{\Delta \eta}^{CP} =$ • Ratio of width in central over peripheral: $\sigma_{\Delta\varphi}^{CP} =$

Phys. Rev. Lett. 119, 102301 (2017) Phys. Rev. C 96, 034904 (2017)

- In central collisions at low $p_{\rm T}$: depletion around $(\Delta \varphi, \Delta \eta) = (0, 0)$
- Per trigger yield is corrected for two-track inefficiencies
- The area of the depletion is excluded from the fit

Phys. Rev. Lett. 119, 102301 (2017) Phys. Rev. C 96, 034904 (2017)

- In central collisions at low $p_{\rm T}$: depletion around $(\Delta \varphi, \Delta \eta) = (0, 0)$
- Per trigger yield is corrected for two-track inefficiencies
- The area of the depletion is excluded from the fit
- \bullet Characterized by $\frac{\mathsf{Fit}\mathsf{-}\mathsf{Data}}{\mathsf{Total}}$ in %

Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

ALICE

3.5

Phys. Rev. Lett. 119, 102301 (2017) Phys. Rev. C 96, 034904 (2017)

• 1 < p_{T,trig} < 2 : 1 < p_{T.assoc} < 2 GeV/c

2 < p asso. < 2 GeV/c

< 3 GeV/c

 $2 < p_{T,trig} < 3 : 1 < p_{T,assoc}$

• Depletion yield = $\frac{\text{Fit}-\text{Data}}{\text{Total yield}}$ in %

• No depletion in higher $p_{\rm T}$, peripheral or pp

ALICE

Phys. Rev. Lett. 119, 102301 (2017) Phys. Rev. C 96, 034904 (2017)

• 1 < p_{T trig} < 2 : 1 < p_{T assoc} < 2 GeV/c

• No depletion in higher $p_{\rm T}$, peripheral or pp

- In AMPT almost independent of string melting
- AMPT is in agreement with data at lowest $p_{\rm T}$
- At higher $p_{\rm T}$ no version shows depletion

Phys. Rev. Lett. 119, 102301 (2017) Phys. Rev. C 96, 034904 (2017)

- Depletion yield = $\frac{\text{Fit}-\text{Data}}{\text{Total yield}}$ in %
- No depletion in higher $p_{\rm T}$, peripheral or pp
- In AMPT almost independent of string melting
- AMPT is in agreement with data at lowest $p_{\rm T}$
- At higher $p_{\rm T}$ no version shows depletion
- Similar depletion seen at $\sqrt{s_{NN}} = 5.02$ TeV \rightarrow \rightarrow guantification on-going

AMPT settings Measurements	String melting & hadronic rescattering	String melting	Hadronic rescattering
Evolution of width	No	No	Yes
Absolute width	10%	10-15%	20 - 30%
Depletion	Yes	No	Yes

- With hadronic rescattering describes depletion and shape evolution
- Absolute width is not described better than 10%

- Are observed effects described by elliptic and/or radial flow?
- 0-10% fitted with Blast-wave fit to extract expansion velocity (π : 0.5 < $p_{\rm T}$ < 1 GeV/c, K: 0.2 < $p_{\rm T}$ < 1.5 GeV/c, p: 0.3 < $p_{\rm T}$ < 2.0 GeV/c)
- v_2 {2} was extracted with 0.2 $<
 ho_{
 m T} <$ 5 GeV/c

Sample	eta_{T}	$v_2{2}$
AMPT string melting and hadronic rescattering	0.442	0.0412 ± 0.0002
AMPT string melting	0.202	0.0389 ± 0.0002
AMPT hadronic rescattering	0.540	0.0330 ± 0.0002
Data*	0.649 ± 0.022	0.0364 ± 0.0003

* From Phys. Rev. C88 (2013) 044910 and Phys. Rev. Lett. 105 (2010) 252302

- With string melting or with hadronic rescattering describes v_2 {2}
- $\beta_{\rm T}$ is lower for all AMPT cases than for data

ALTOP

- Are observed effects described by elliptic and/or radial flow?
- 0-10% fitted with Blast-wave fit to extract expansion velocity (π : 0.5 < $p_{\rm T}$ < 1 GeV/c, K: 0.2 < $p_{\rm T}$ < 1.5 GeV/c, p: 0.3 < $p_{\rm T}$ < 2.0 GeV/c)
- v_2 {2} was extracted with 0.2 < $p_{\rm T}$ < 5 GeV/c

Sample	eta_{T}	$v_2{2}$
AMPT string melting and hadronic rescattering	0.442	0.0412 ± 0.0002
AMPT string melting	0.202	0.0389 ± 0.0002
AMPT hadronic rescattering	0.540	0.0330 ± 0.0002
Data*	0.649 ± 0.022	0.0364 ± 0.0003

* From Phys. Rev. C88 (2013) 044910 and Phys. Rev. Lett. 105 (2010) 252302

Closest $v_2\{2\}$ to data

- Only version with hadronic rescattering
 - has depletion
 - ullet follows the centrality and p_{T} evolution of relative width

- Are observed effects described by elliptic and/or radial flow?
- 0-10% fitted with Blast-wave fit to extract expansion velocity (π : 0.5 < $p_{\rm T}$ < 1 GeV/c, K: 0.2 < $p_{\rm T}$ < 1.5 GeV/c, p: 0.3 < $p_{\rm T}$ < 2.0 GeV/c)
- v_2 {2} was extracted with 0.2 $<
 ho_{
 m T} <$ 5 GeV/c

Sample	$eta_{ m T}$	$v_2{2}$
AMPT string melting and hadronic rescattering	0.442	0.0412 ± 0.0002
AMPT string melting	0.202	0.0389 ± 0.0002
AMPT hadronic rescattering	0.540	0.0330 ± 0.0002
Data*	0.649 ± 0.022	0.0364 ± 0.0003

* From Phys. Rev. C88 (2013) 044910 and Phys. Rev. Lett. 105 (2010) 252302

Closest β_{T} to data

- Has depletion
- ullet Follows the centrality and p_{T} evolution of relative width

ALTOP

- Are observed effects described by elliptic and/or radial flow?
- 0-10% fitted with Blast-wave fit to extract expansion velocity (π : 0.5 < $p_{\rm T}$ < 1 GeV/c, K: 0.2 < $p_{\rm T}$ < 1.5 GeV/c, p: 0.3 < $p_{\rm T}$ < 2.0 GeV/c)
- v_2 {2} was extracted with 0.2 $<
 ho_{
 m T} <$ 5 GeV/c

Sample	$eta_{ m T}$	$v_2{2}$
AMPT string melting and hadronic rescattering	0.442	0.0412 ± 0.0002
AMPT string melting	0.202	0.0389 ± 0.0002
AMPT hadronic rescattering	0.540	0.0330 ± 0.0002
Data*	0.649 ± 0.022	0.0364 ± 0.0003

* From Phys. Rev. C88 (2013) 044910 and Phys. Rev. Lett. 105 (2010) 252302

₩

- $\bullet\,$ Large $\beta_{\rm T}$ is needed to describe depletion and evolution
- Likely cause of the effects is radial flow

Summary

- \bullet Evolution of near-side peak shape towards low $p_{\rm T}$ and central collisions:
 - Small broadening in $\Delta arphi$
 - Significant broadening in $\Delta\eta$
 - Depletion around $(\Delta arphi, \Delta \eta) = (0, 0)$
- Comparison to AMPT:
 - None of the AMPT settings describe the absolute width
 - With only hadronic rescattering describes the evolution of the peak
 - With hadronic rescattering describes depletion, independent of string melting
- Interpretation:
 - $\bullet~{\rm Strong}$ longitudinal flow $\Rightarrow~{\rm longitudinal}~{\rm broadening}$
 - Driving factor for depletion and broadening is radial flow
 - Depletion and broadening caused by interplay of jets and collective medium

Thank you for your attention!

- 39M Pb–Pb events at $\sqrt{s_{NN}}=2.76~{
 m TeV}$
- 50M Pb–Pb events at $\sqrt{s_{NN}}=5.02$ TeV
- 30M pp events at $\sqrt{s}=2.76~{
 m TeV}$
- $|\eta| < 0.8$
- $|z_{
 m vtx}| < 7$ cm
- Selection criteria on decay products: pair excluded if
 - $m_{
 m inv} < 4~{
 m MeV}/c^2$
 - $|m_{\rm inv} m(\Lambda)| < 5 \,\,{\rm MeV}/c^2$
 - $|m_{\rm inv} m(K_s^0)| < 5 \,\,{
 m MeV}/c^2$
- ullet Selection criteria to remove two-track inefficiencies: $|\Delta\eta|>$ 0.02 and $|\Delta\varphi^*|>$ 0.02 rad
- \bullet Correction done to remove distortion arising from a dependence on η

ALTCI

- With string melting and with hadronic rescattering
 - Version v2.25t3
 - Parameter isoft = 4
 - Parameter ntmax = 150
- With string melting and without hadronic rescattering
 - Version v2.25t3
 - Parameter isoft = 4
 - Parameter ntmax = 3
- Without string melting and with hadronic rescattering
 - Version v1.25t3
 - Parameter isoft = 1
 - Parameter ntmax = 150

Settings:

- string melting off, hadronic rescattering on
- string melting on, hadronic rescattering on
- string melting on, hadronic rescattering off

Comparison to MC – absolute width in peripheral

• Absolute width described by $\frac{\sigma_{\Delta\varphi}(Data)}{\sigma_{\Delta\omega}(MC)}$, $\frac{\sigma_{\Delta\eta}}{\sigma_{\Delta\omega}}$

Comparison to MC – absolute width in central

• Absolute width described by $\frac{\sigma_{\Delta\varphi}(Data)}{\sigma_{\Delta\varphi}(MC)}$, $\frac{\sigma_{\Delta\eta}(Data)}{\sigma_{\Delta\eta}(MC)}$

Near-side depletion in AMPT

- Generator level
- AMPT with hadronic rescattering on shows depletion independent of string melting