Spin Formalism and the Hadronic Density Matrix in Dilepton Production

Baiyang Zhang ${ }^{1}$

Wigner Research Centre for Physics, Hungarian Academy of Sciences

$$
\text { Balaton Workshop } 2019
$$

${ }^{1}$ baiyang.zhang@wigner.mta.hu
(1) The Spin Formalism
(2) The Density Matrix in Resonance Decay
(3) The Helicity Amplitude for $R \rightarrow N \rho$
(4) Summary

Introduction

- The application of Poincaré group (translation + Lorentz transformation) to physics has proved to be quite fruitful
- Particles can be mathematically regarded as basis of irreducible representation of Poincaré group, their properties under lorentz transformation are studied by so-called spin formalism
- Once the momentum, spin and helicity for participating particle are known, the angular dependence of scattering amplitudes can be obtained
- Experimentally, since the angular distribution for the final state particles can be measured, spin formalism can in turn provide the information about the spin and polarization of intermediate resonances.

Euler angles

zyz or y convention:

(1) rotate by α around \hat{z}
(2) rotate by β around \hat{y}^{\prime}
(3) rotate by γ around $\hat{z}^{\prime \prime}$

After rotation
$\hat{z} \rightarrow$ (azimuthal $=\alpha$, polar $=\beta$)

$$
\begin{aligned}
R(\alpha, \beta, \gamma) & =e^{-i \gamma J_{z^{\prime \prime}}} e^{-i \beta J_{y^{\prime}}} e^{-i \alpha J_{z}} \\
& =e^{-i \alpha J_{z}} e^{-i \beta J_{y}} e^{-i \gamma J_{z}}
\end{aligned}
$$

where we have used

$$
R_{\hat{n}^{\prime}}(\alpha)=R R_{\hat{n}}(\alpha) R^{-1}
$$

Irreducible representations

The Cartan sub-algebra

A maximum set of commutative operators can be used to label different basis states.

- $|j m\rangle$: simultaneous eigenstates of J^{2} and J_{3}

$$
\begin{aligned}
J_{3}|j m\rangle & =m|j m\rangle \\
J^{2}|j m\rangle & =j(j+1)|j m\rangle \\
J_{ \pm}|j m\rangle & =\sqrt{(j \pm m+1)(j \mp m)}|j, m \pm 1\rangle
\end{aligned}
$$

- Clebsch-Gordan decomposition of product representations:

$$
\begin{aligned}
\left|j_{1} m_{1} ; j_{2} m_{2}\right\rangle & \equiv\left|j_{1} m_{1}\right\rangle \otimes\left|j_{2} m_{2}\right\rangle \\
\left|j_{1} j_{2} J M\right\rangle & =\sum_{m_{1} m_{2}}\left|j_{1} m_{1} ; j_{2} m_{2}\right\rangle\left\langle j_{1} m_{1} ; j_{2} m_{2} \mid J M\right\rangle
\end{aligned}
$$

Wigner D-function

The transformation of a state under a rotation can be written as

$$
|\psi\rangle=(|1\rangle, \ldots,|n\rangle)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right) \rightarrow\left|\psi^{\prime}\right\rangle=\underbrace{(|1\rangle, \ldots,|n\rangle) D(\alpha, \beta, \gamma)}_{\equiv\left(\left|1^{\prime}\right\rangle, \ldots,\left|n^{\prime}\right\rangle\right)}\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)
$$

Wigner D-function

- $R|n\rangle=\left|n^{\prime}\right\rangle D^{j}(\alpha, \beta, \gamma)^{n^{\prime}}{ }_{n}$
- $D^{j}(\alpha, \beta, \gamma)^{n^{\prime}}{ }_{n}=\left\langle j n^{\prime}\right| D^{j}(\alpha, \beta, \gamma)|j n\rangle=e^{-i \alpha n^{\prime}} d^{j}(\beta)^{n^{\prime}}{ }_{n} e^{-i \gamma n}$
where

Wigner d-function

$d^{j}(\beta)^{n^{\prime}}{ }_{n}=\left\langle j n^{\prime}\right| d^{j}(\beta)|j n\rangle$

One particle plane-wave states

We use 3-momentum and helicity to denote plane wave states

$$
\begin{aligned}
|\boldsymbol{p}, s, \lambda\rangle & =L(\boldsymbol{p}) R(\phi, \theta,-\phi)|\boldsymbol{p}=0, s, \lambda\rangle \\
& =R(\phi, \theta,-\phi)|p \hat{z}, s, \lambda\rangle
\end{aligned}
$$

To fix the phase of $|-p \hat{z}, s, \lambda\rangle$, we require that

$$
\lim _{p \rightarrow 0}|-p \hat{z}, s, \lambda\rangle=\lim _{p \rightarrow 0}|p \hat{z}, s,-\lambda\rangle
$$

thus

$$
|-p \hat{z}, s, \lambda\rangle=(-1)^{s-\lambda} e^{-i \pi J_{y}}|p \hat{z}, s, \lambda\rangle
$$

Lorentz invariant normalization

$$
\left\langle\boldsymbol{p}^{\prime}, s^{\prime}, \lambda^{\prime} \mid \boldsymbol{p}, s, \lambda\right\rangle=2 E(2 \pi)^{3} \delta^{(3)}\left(\boldsymbol{p}^{\prime}-\boldsymbol{p}\right) \delta_{s^{\prime} s} \delta_{\lambda^{\prime} \lambda}
$$

Two-particle plane-wave states

- Multi-paticles states \sim direct production of one-particle states:

$$
\left|\boldsymbol{p}_{1} s_{1} m_{1}, \boldsymbol{p}_{2} s_{2} m_{2}\right\rangle=\left|\boldsymbol{p}_{1} s_{1} m_{1}\right\rangle \otimes\left|\boldsymbol{p}_{2} s_{2} m_{2}\right\rangle
$$

Go to the CM frame and factor out the total 4-momentum P and relative momentum \boldsymbol{p} :

$$
\left|p \theta \phi \lambda_{1} \lambda_{2}\right\rangle=(2 \pi)^{3} \sqrt{\frac{4 \sqrt{s}}{p}}\left|\theta \phi \lambda_{1} \lambda_{2}\right\rangle\left|P^{\mu}\right\rangle
$$

where θ, ϕ is the direction of \mathbf{p}

- Normalization:

$$
\left\langle\theta^{\prime} \phi^{\prime} \lambda_{1}^{\prime} \lambda_{2}^{\prime} \mid \theta \phi \lambda_{1} \lambda_{2}\right\rangle=\delta\left(\cos \theta^{\prime}-\cos \theta\right) \delta\left(\phi^{\prime}-\phi\right) \delta_{\lambda_{1}^{\prime} \lambda_{1}} \delta_{\lambda_{2}^{\prime} \lambda_{2}}
$$

Two-particle spherical-wave states

- The projection method can be used to obtain spherical-wave basis from plane-wave basis
- States with definite total angular momentum:

$$
\left|J M \lambda_{1} \lambda_{2}\right\rangle=\frac{2 J+1}{4 \pi} \int d \Omega D_{M, \lambda_{1}-\lambda_{2}}^{J}(\phi, \theta,-\phi)^{*}\left|\theta \phi, \lambda_{1} \lambda_{2}\right\rangle
$$

- Inverse relation:

$$
\left|\theta \phi, \lambda_{1} \lambda_{2}\right\rangle=\sum_{J M} \sqrt{\frac{2 J+1}{4 \pi}} D_{M, \lambda_{1}-\lambda_{2}}^{J}(\phi, \theta,-\phi)\left|J M, \lambda_{1} \lambda_{2}\right\rangle
$$

When $\left|\theta \phi, \lambda_{1} \lambda_{2}\right\rangle$ is written in terms of spherical-wave states, we can exploit the conservation of total angular momentum.

Helicity amplitude for two-body decay

The initial and final states:

- Initial state: a resonance of spin- J at rest: $|J M\rangle$
- Final state: a two-particle state in the CM frame (helicity basis)

The decay amplitude is

$$
\begin{aligned}
& \left\langle\mathbf{p} s_{1} \lambda_{1} ;-\mathbf{p} s_{2} \lambda_{2}\right| \mathcal{M}|J M\rangle \\
& \quad=4 \pi \sqrt{\frac{\sqrt{s}}{|\mathbf{p}|}} \sum_{J^{\prime} M^{\prime}} D_{M^{\prime}, \lambda_{1}-\lambda_{2}}^{J^{\prime}}(\Omega)^{*} \underbrace{\left\langle\sqrt{s}, J^{\prime} M^{\prime} \lambda_{1} \lambda_{2}\right| \mathcal{M}|J M\rangle}_{\propto(\ldots)_{\lambda_{1} \lambda_{2}}^{J} \delta_{J J^{\prime}} \delta_{M M^{\prime}}} \\
& \quad \equiv F_{\lambda_{1} \lambda_{2}}^{J} D_{M, \lambda_{1}-\lambda_{2}}^{J}(\Omega)^{*}
\end{aligned}
$$

The helicity amplitude

$$
F_{\lambda_{1} \lambda_{2}}^{J}=4 \pi \sqrt{\frac{\sqrt{s}}{\mathbf{p}}}\left\langle\sqrt{s}, J M \lambda_{1} \lambda_{2}\right| \mathcal{M}|J M\rangle
$$

Dilepton production in pion-nucleon collisions

$$
\pi N \rightarrow N e^{+} e^{-} \text {measured at HADES }
$$

resonance contributions:

The angular distribution of $e^{+} e^{-}$can provide us

- Information on the virtual photon or vector meson which decays into $e^{+} e^{-}$
- Information on the intermediate resonance, such as its spin and parity The s-channel process can be divided into different steps and studied independently. Since we are only interested in the angular dependence, the total cross section is not important.

The density matrix for resonance decay

- The nucleon beam is unpolarized, thus the initial state is a mixed state. The total spin in \hat{z} is given by the z-component of nucleon spin

$$
\rho \equiv \sum_{i} P_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|,\langle\mathcal{O}\rangle=\operatorname{tr}\{\mathcal{O} \rho\}
$$

- In a two-step process

$$
\left|\psi_{i}\right\rangle \rightarrow T_{1}\left|\psi_{i}\right\rangle=\sum_{k}\left|\phi_{k}\right\rangle\left\langle\phi_{k}\right| T_{1}\left|\psi_{i}\right\rangle \rightarrow \sum_{k} T_{2}\left|\phi_{k}\right\rangle\left\langle\phi_{k}\right| T_{1}\left|\psi_{i}\right\rangle
$$

- In our calculation T_{1} stands for $R \rightarrow N \rho$ and $T_{2} \rho \rightarrow e^{+} e^{-}$

$$
\begin{aligned}
\rho_{k k^{\prime}}^{\mathrm{prod}} & =\sum_{i} P_{i}\left\langle\phi_{k}\right| T_{1}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| T_{1}^{\dagger}\left|\phi_{k^{\prime}}\right\rangle \\
\rho_{k k^{\prime}}^{\mathrm{dec}} & =\sum_{i} P_{i}\left\langle\phi_{k}\right| T_{2}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| T_{2}^{\dagger}\left|\phi_{k^{\prime}}\right\rangle
\end{aligned}
$$

The polarization density matrix

- The production of N and virtual photon:

$$
\mathcal{M}^{\text {had }}(\lambda)=W_{\mu} \epsilon^{\mu}(\lambda)^{*}
$$

- The virtual photon (vector meson) decay into dilepton:

$$
\mathcal{M}^{\operatorname{dec}}(\lambda)=\epsilon_{\mu}(\lambda) L^{\mu}
$$

$$
\begin{aligned}
\sum_{\text {pol }}|\mathcal{M}|^{2} & =\sum_{\text {pol }} \mathcal{M}^{\text {had }}(\lambda) \mathcal{M}^{\text {had } *}\left(\lambda^{\prime}\right) \mathcal{M}^{\text {dec }}(\lambda) \mathcal{M}^{\text {dec } *}\left(\lambda^{\prime}\right) \\
& =\sum_{\lambda \lambda^{\prime}} \rho_{\lambda \lambda^{\prime}}^{\text {had }} \rho_{\lambda^{\prime} \lambda}^{\text {dec }}
\end{aligned}
$$

The density matrix

$$
\rho_{\lambda \lambda^{\prime}}^{\mathrm{had}} \equiv \sum_{\text {pol }} W_{\mu} W_{\mu^{\prime}} \epsilon^{\mu}(\lambda)^{*} \epsilon^{\mu^{\prime}}\left(\lambda^{\prime}\right), \rho_{\lambda^{\prime} \lambda}^{\mathrm{dec}} \equiv \sum_{\text {pol }} L^{\nu} L^{\nu^{\prime}} \epsilon_{\nu}(\lambda) \epsilon_{\nu^{\prime}}\left(\lambda^{\prime}\right)
$$

The density matrices

- The leptonic decay density matrix is explicitly known:
$\rho_{\lambda^{\prime}, \lambda}^{\text {lep }}=4\left|\mathbf{k}_{1}\right|^{2}\left(\begin{array}{ccc}1+\cos ^{2} \theta_{e}+\alpha & \sqrt{2} \cos \theta_{e} \sin \theta_{e} e^{i \phi_{e}} & \sin ^{2} \theta_{e} e^{2 i \phi_{e}} \\ \sqrt{2} \cos \theta_{e} \sin \theta_{e} e^{-i \phi_{e}} & 2\left(1-\cos ^{2} \theta_{e}\right)+\alpha & \sqrt{2} \cos \theta_{e} \sin \theta_{e} e^{i \phi_{e}} \\ \sin ^{2} \theta_{e} e^{-2 i \phi_{e}} & \sqrt{2} \cos \theta_{e} \sin \theta_{e} e^{-i \phi_{e}} & 1+\cos ^{2} \theta_{e}+\alpha\end{array}\right)$
where $\alpha=2 m_{e}^{2} /\left|\mathbf{k}_{1}\right|^{2} \quad$ (neglect in the following)
- This gives the angular distribution of e^{+}and e^{-}in the virtual photon rest frame:

$$
\begin{aligned}
\sum_{\text {pol }}|\mathcal{M}|^{2} & \propto\left(1+\cos ^{2} \theta_{e}\right)\left(\rho_{-1,-1}^{\text {had }}+\rho_{1,1}^{\text {had }}\right)+2\left(1-\cos ^{2} \theta_{e}\right) \rho_{0,0}^{\text {had }} \\
& +\sin ^{2} \theta_{e}\left(e^{2 i \phi_{e}} \rho_{-1,1}^{\text {had }}+e^{-2 i \phi_{e}} \rho_{1,-1}^{\text {had }}\right) \\
& +\sqrt{2} \cos \theta_{e} \sin \theta_{e}\left[e^{i \phi_{e}}\left(\rho_{-1,0}^{\text {had }}+\rho_{0,1}^{\text {had }}\right)+e^{-i \phi_{e}}\left(\rho_{1,0}^{\text {had }}+\rho_{0,-1}^{\text {had }}\right)\right]
\end{aligned}
$$

- The angular dependence of cross section:

$$
\frac{d \sigma}{d M d \cos \theta_{\gamma^{*}} d \cos _{e}} \propto \Sigma_{\perp}\left(1+\cos ^{2} \theta_{e}\right)+\Sigma_{\|}\left(1-\cos ^{2} \theta_{e}\right)
$$

where

$$
\Sigma_{\perp}=\rho_{-1,-1}^{\mathrm{had}}+\rho_{1,1}^{\mathrm{had}}, \quad \Sigma_{\|}=2 \rho_{0,0}^{\mathrm{had}}
$$

The Rarita-Schwinger field

The Rarita-Schwinger fields $\psi_{\mu_{1} \ldots \mu_{k}}$ which describe a particle of $\operatorname{spin} k+\frac{1}{2}$

- Corresponds to the

$$
\underbrace{\left(\frac{1}{2}, \frac{1}{2}\right) \otimes \cdots \otimes\left(\frac{1}{2}, \frac{1}{2}\right)}_{\text {k representation for spin-1 }} \otimes \underbrace{\left(\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)\right)}_{\text {Spin- } \frac{1}{2}}
$$

- It is afflicted with extra lower spin degree of freedom e.g. $\frac{1}{2} \otimes 1=\frac{3}{2} \oplus \frac{1}{2}$, it can be cured by introducing:

The gauge conditions

$$
\psi_{\mu} \rightarrow \psi_{\mu}+i \partial_{\mu} \chi, \psi_{\mu \nu} \rightarrow \psi_{\mu \nu}+\frac{i}{2}\left(\partial_{\mu} \chi_{\nu}+\partial_{\nu} \chi_{\mu}\right)
$$

[^0]
The effective Lagrangian for $R-N-\rho$ interaction

The Lagrangian for $R^{1 / 2}-\pi-\gamma$ interaction

$$
\begin{aligned}
\mathcal{L}_{R_{1 / 2} N \gamma}^{(1)} & =-g_{R N \gamma}^{\prime} \bar{\psi}_{R} \tilde{\Gamma} \gamma^{\mu} \psi_{N} A_{\mu} \\
\mathcal{L}_{R_{1 / 2} N \gamma}^{(2)} & =\frac{g_{R N \gamma}}{2 m_{\rho}} \bar{\psi}_{R} \sigma^{\mu \nu} \tilde{\Gamma} \psi_{N} F_{\mu \nu}+\text { H.c. }
\end{aligned}
$$

- Ψ_{R} : The spin- $\frac{1}{2}$ resonance operator for $N(1440)\left(\frac{1}{2}^{+}\right), N(1535)\left(\frac{1}{2}^{-}\right)$, $N(1650)\left(\frac{1}{2}^{-}\right)$
- A^{μ} : Gamma photon or ρ meson
- $\Gamma=\gamma_{5}$ for $J^{P}=1 / 2^{-}, \Gamma=1$ for $J^{P}=1 / 2^{+}$
(M. Zetenyi and Gy. Wolf, Phys. Rev. C 86 (2012) 065209)

The effective Lagrangian for $R-N-\rho$ interaction

The Lagrangians for $R^{3 / 2}-\pi-\gamma$ interaction

$$
\begin{aligned}
\mathcal{L}_{R N \gamma}^{G 1} & =-\frac{i g_{1}}{4 m_{N}^{2}}\left[\bar{\psi}^{\nu} \mathcal{O}_{(\mu) \nu}^{3 / 2}(\partial) \Gamma \gamma_{\lambda} \psi+\bar{\psi} \gamma_{\lambda} \bar{\Gamma} \mathcal{O}_{(\mu) \nu}^{3 / 2}(\partial) \psi^{\nu}\right] F^{\lambda \mu}, \\
\mathcal{L}_{R N \gamma}^{G .2} & =-\frac{g_{2}}{8 m_{N}^{3}} \bar{\Psi}_{\mu} \Gamma \partial_{\nu} \psi F^{\mu \nu}+H . c, \\
\mathcal{L}_{R N \gamma}^{G 3} & =-\frac{g_{3}^{3}}{8 m_{N}^{3}}\left[\bar{\Psi}_{\mu} \Gamma \psi+\bar{\psi} \Gamma \Psi_{\mu}\right] \partial_{\nu} F^{\mu \nu} .
\end{aligned}
$$

- Ψ_{ν} : The spin- $\frac{3}{2}$ resonance operator for $N(1520)\left(\frac{3}{2}^{-}\right)$
- $\mathcal{O}^{3 / 2}$ is the projection operator which eliminates the lower-spin degree of freedom
- $\Gamma=\gamma_{5}$ for $J^{P}=3 / 2^{+}, \Gamma=1$ for $J^{P}=3 / 2^{-}$

The colinear amplitude for $R \rightarrow N \rho$

The master formula

$$
\left\langle p \theta \phi, \lambda_{1} \lambda_{2}\right| \mathcal{M}\left|J^{ \pm} M\right\rangle=\left\langle p \hat{z}, \lambda_{1} \lambda_{2}\right| \mathcal{M}\left|J^{ \pm} M\right\rangle D_{M, \lambda_{1}-\lambda_{2}}^{J}(\Omega)^{*}
$$

With the help of effective interaction lagrangian, we can calculate the colinear amplitude for the resonance decay into nucleon and rho meson. Define

$$
\mathfrak{A}_{\lambda_{1} \lambda_{2}}^{J \pm} \equiv\left\langle p \hat{z}, \lambda_{1} \lambda_{2}\right| \mathcal{M}\left|J^{ \pm} M\right\rangle
$$

The colinear amplitude

$$
\binom{\mathfrak{A}_{-1 / 2,-1}^{1 / 2 \pm}}{\mathfrak{A}_{1 / 2,0}^{1 / 2 \pm}}=i \sqrt{m_{\mp}^{2}-m_{\gamma}^{2}}\left(\begin{array}{cc}
\sqrt{2} \frac{m_{ \pm}}{m_{\rho}} & -\sqrt{2} \\
-\frac{m_{\gamma}}{m_{\rho}} & \pm \frac{m_{ \pm}}{m_{\gamma}}
\end{array}\right)\binom{g_{R N \gamma}}{g_{R N \gamma}^{\prime}}
$$

where $m_{ \pm} \equiv m_{R} \pm m_{N}$

The amplitude for $R \rightarrow N \rho$

In a similar fashion $\left(\mathfrak{A}_{1 / 2,-1}^{3 / 2 \pm}, \mathfrak{A}_{-1 / 2,-1}^{3 / 2 \pm}, \mathfrak{A}_{1 / 2,0}^{3 / 2 \pm}\right)^{T}$ is given as

$$
\left(\begin{array}{ccc}
\pm \frac{i}{4} m_{R} m_{N} m_{\mp} & \frac{m_{R}}{16}\left(m_{\gamma}^{2}-m_{+} m_{-}\right) & -\frac{m_{R} m_{\gamma}^{2}}{8} \\
\frac{i m_{N}}{4}\left(m_{+} m_{-}+m_{\gamma}^{2}+3 m_{R} m_{\mp}\right) & \pm \frac{m_{R}}{16 \sqrt{3}}\left(m_{\gamma}^{2}-m_{+} m_{-}\right) & \left.\mp \frac{m_{R} m_{\gamma}^{2}}{8 \sqrt{3}}\right) \\
\pm \frac{i \sqrt{3}}{2 \sqrt{3}} m_{R} m_{N} m_{\gamma} & \frac{m_{\gamma}}{8 \sqrt{6}}\left(m_{\mp}^{2} \mp 2 m_{N} m_{R}-m_{\gamma}^{2}\right) & \frac{m_{\gamma}}{8 \sqrt{6}}\left(m_{+} m_{-}+m_{\gamma}^{2}-4 m_{R} m_{\mp}\right)
\end{array}\right)
$$

We can obtain the angle dependence amplitude by multiplying the correct Wigner-D function, for example

$$
\mathfrak{A}_{1 / 2,-1}^{3 / 2 \pm}(\theta, \phi=0)= \pm \frac{i}{4} m_{R} m_{N} m_{\mp} \cos ^{3}\left(\frac{\theta}{2}\right) g_{1}+\cdots
$$

Back to the density matrix

With the angle dependent helicity amplitudes

$$
\mathfrak{A}_{\lambda_{N} \lambda \gamma}^{M}(\theta, \phi) \equiv\left\langle k_{N}, \theta \phi, \lambda_{N} \lambda_{\gamma}\right| \mathcal{M}|J M\rangle
$$

The density matrix

$$
\rho_{\lambda \lambda^{\prime}}=\sum_{M, \lambda_{N}} p_{M} \mathfrak{A}_{\lambda_{N} \lambda^{\prime}}^{M} \mathfrak{A}_{\lambda_{N} \lambda^{\prime}}^{M *}, p_{\frac{1}{2}}=p_{-\frac{1}{2}}=\frac{1}{2}
$$

where p_{M} stands for the probability for the resonance in $\left|\frac{3}{2}, M\right\rangle$ state.

- $\rho_{\lambda \lambda^{\prime}}$ is given in terms of m_{R}, m_{N}, m_{ρ} where m_{R}^{2} is equal to $\left(p_{\pi}+p_{N}\right)^{2}$ of the original $2 \rightarrow 2$ process
- $\rho_{\lambda \lambda^{\prime}}$ can be extracted from the measured cross section for $e^{+} e^{-}$production

The extracted density matrix of ρ production

- Data dots are experimental results from HADES collaboration
- We assume that the ρ-mesons are produced by $\mathrm{N}(1520)$, for now we only kept contribution from coupling constant g_{1}

Summary

- The cross section can be divided into angular dependent and angular independent (dynamic) parts. The angular dependent part is model independent
- After dividing the process into consecutive stages, the hadronic decay amplitude can be calculated using effective Lagrangian. Angular dependence + decay amplitude \rightarrow density matrix.
- Inversely, by comparing the experimental data and prediction, we can obtain information about the intermediate resonance, like what we did for $N(1520)$ decay.

Future work

- Contribution from Lagrangians with g_{2}, g_{3} will be considered to give a better fit to extracted density matrix
- At higher energy more resonance states with higher spin will be taken into consideration
- We could also take two-pion production into our model, the statistical error will be reduced greatly

[^0]: V.Pascalutsa, "Quantization of an interacting spin-3/2 field and the Delta isobar", Phys. Rev. D58, 096002 (1998)

