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The Spin Formalism

Introduction

The application of Poincaré group (translation + Lorentz transforma-
tion) to physics has proved to be quite fruitful

Particles can be mathematically regarded as basis of irreducible repre-
sentation of Poincaré group, their properties under lorentz transforma-
tion are studied by so-called spin formalism

Once the momentum, spin and helicity for participating particle are
known, the angular dependence of scattering amplitudes can be ob-
tained

Experimentally, since the angular distribution for the final state particles
can be measured, spin formalism can in turn provide the information
about the spin and polarization of intermediate resonances.
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The Spin Formalism

Euler angles

zyz or y convention:

1 rotate by α around ẑ

2 rotate by β around ŷ′

3 rotate by γ around ẑ′′

After rotation
ẑ → (azimuthal = α, polar = β)

R(α, β, γ) = e−iγJz′′e−iβJy′e−iαJz

= e−iαJze−iβJye−iγJz

where we have used
Rn̂′(α) = RRn̂(α)R−1
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The Spin Formalism

Irreducible representations

The Cartan sub-algebra

A maximum set of commutative operators can be used to label different
basis states.

|jm〉: simultaneous eigenstates of J2 and J3

J3 |jm〉 = m |jm〉
J2 |jm〉 = j(j + 1) |jm〉

J± |jm〉 =
√

(j ±m+ 1)(j ∓m) |j,m± 1〉

Clebsch-Gordan decomposition of product representations:

|j1m1; j2m2〉 ≡ |j1m1〉 ⊗ |j2m2〉

|j1j2JM〉 =
∑
m1m2

|j1m1; j2m2〉 〈j1m1; j2m2|JM〉
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The Spin Formalism

Wigner D-function

The transformation of a state under a rotation can be written as

|ψ〉 = (|1〉 , . . . , |n〉)

c1
...
cn

→ ∣∣ψ′〉 = (|1〉 , . . . , |n〉)D(α, β, γ)︸ ︷︷ ︸
≡(|1′〉,...,|n′〉)

c1
...
cn


Wigner D-function

R |n〉 = |n′〉Dj(α, β, γ)n
′
n

Dj(α, β, γ)n
′
n = 〈jn′|Dj(α, β, γ) |jn〉 = e−iαn

′
dj(β)n

′
ne
−iγn

where

Wigner d-function

dj(β)n
′
n = 〈jn′| dj(β) |jn〉

Baiyang Zhang (Wigner RCP) Spin formalism in dilepton production Balaton Workshop 2019 6 / 22



The Spin Formalism

One particle plane-wave states

We use 3-momentum and helicity to denote plane wave states

|p, s, λ〉 = L(p)R(φ, θ,−φ) |p = 0, s, λ〉
= R(φ, θ,−φ) |pẑ, s, λ〉

To fix the phase of |−pẑ, s, λ〉, we require that

lim
p→0
|−pẑ, s, λ〉 = lim

p→0
|pẑ, s,−λ〉

thus
|−pẑ, s, λ〉 = (−1)s−λe−iπJy |pẑ, s, λ〉

Lorentz invariant normalization

〈p′, s′, λ′|p, s, λ〉 = 2E(2π)3δ(3)(p′ − p)δs′sδλ′λ
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The Spin Formalism

Two-particle plane-wave states

Multi-paticles states ∼ direct production of one-particle states:

|p1s1m1,p2s2m2〉 = |p1s1m1〉 ⊗ |p2s2m2〉

Go to the CM frame and factor out the total 4-momentum P and
relative momentum p:

|pθφλ1λ2〉 = (2π)3
√

4
√
s

p |θφλ1λ2〉 |Pµ〉

where θ, φ is the direction of p

Normalization:〈
θ′φ′λ′1λ

′
2|θφλ1λ2

〉
= δ(cos θ′ − cos θ)δ(φ′ − φ)δλ′1λ1δλ′2λ2
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The Spin Formalism

Two-particle spherical-wave states

The projection method can be used to obtain spherical-wave basis from
plane-wave basis

States with definite total angular momentum:

|JMλ1λ2〉 =
2J + 1

4π

∫
dΩDJ

M,λ1−λ2(φ, θ,−φ)∗ |θφ, λ1λ2〉

Inverse relation:

|θφ, λ1λ2〉 =
∑
JM

√
2J+1

4π DJ
M,λ1−λ2(φ, θ,−φ) |JM, λ1λ2〉

When |θφ, λ1λ2〉 is written in terms of spherical-wave states, we can
exploit the conservation of total angular momentum.
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The Spin Formalism

Helicity amplitude for two-body decay

The initial and final states:

Initial state: a resonance of spin-J at rest: |JM〉
Final state: a two-particle state in the CM frame (helicity basis)

The decay amplitude is

〈ps1λ1;−ps2λ2|M|JM〉

= 4π

√√
s

|p|
∑
J ′M ′

DJ ′
M ′,λ1−λ2(Ω)∗

〈√
s, J ′M ′λ1λ2|M|JM

〉︸ ︷︷ ︸
∝ (...)Jλ1λ2

δJJ′δMM′

≡ F Jλ1λ2D
J
M,λ1−λ2(Ω)∗

The helicity amplitude

F Jλ1λ2 = 4π

√
√
s

p|
〈√

s, JMλ1λ2|M|JM
〉
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The Density Matrix in Resonance Decay

Dilepton production in pion−nucleon collisions

πN → Ne+e− measured at HADES

N(pi)

N(pf)

π(q)

e
-
(k1)

e
+
(k2)

γ(k)

resonance contributions: R

(f)

R

(g)

The angular distribution of e+e− can provide us

Information on the virtual photon or vector meson which decays into
e+e−

Information on the intermediate resonance, such as its spin and parity

The s-channel process can be divided into different steps and studied inde-
pendently. Since we are only interested in the angular dependence, the total
cross section is not important.
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The Density Matrix in Resonance Decay

The density matrix for resonance decay

The nucleon beam is unpolarized, thus the initial state is a mixed state.
The total spin in ẑ is given by the z-component of nucleon spin

ρ ≡
∑
i

Pi |ψi〉 〈ψi| , 〈O〉 = tr{Oρ}

In a two-step process

|ψi〉 → T1 |ψi〉 =
∑
k

|φk〉 〈φk|T1 |ψi〉 →
∑
k

T2 |φk〉 〈φk|T1 |ψi〉

In our calculation T1 stands for R→ Nρ and T2 ρ→ e+e−

ρprod
kk′ =

∑
i

Pi 〈φk|T1 |ψi〉 〈ψi|T †1 |φk′〉

ρdec
kk′ =

∑
i

Pi 〈φk|T2 |ψi〉 〈ψi|T †2 |φk′〉
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The Density Matrix in Resonance Decay

The polarization density matrix

The production of N and virtual photon:

Mhad(λ) = Wµε
µ(λ)∗

The virtual photon (vector meson) decay into dilepton:

Mdec(λ) = εµ(λ)Lµ,

∑
pol

|M|2 =
∑
pol

Mhad(λ)Mhad∗(λ′)Mdec(λ)Mdec∗(λ′)

=
∑
λλ′

ρhad
λλ′ρ

dec
λ′λ

The density matrix

ρhad
λλ′ ≡

∑
pol

WµWµ′ε
µ(λ)∗εµ

′
(λ′), ρdec

λ′λ ≡
∑
pol

LνLν
′
εν(λ)εν′(λ

′).
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The Density Matrix in Resonance Decay

The density matrices

The leptonic decay density matrix is explicitly known:

ρlep
λ′,λ = 4|k1|2

 1 + cos2 θe + α
√

2 cos θe sin θeeiφe sin2 θee2iφe√
2 cos θe sin θee−iφe 2(1− cos2 θe) + α

√
2 cos θe sin θeeiφe

sin2 θee−2iφe
√

2 cos θe sin θee−iφe 1 + cos2 θe + α


where α = 2m2

e/|k1|2 (neglect in the following)

This gives the angular distribution of e+ and e− in the virtual photon rest frame:

∑
pol

|M|2 ∝ (1 + cos2 θe)(ρ
had
−1,−1 + ρhad

1,1) + 2(1− cos2 θe)ρ
had
0,0

+ sin2 θe(e
2iφeρhad

−1,1 + e−2iφeρhad
1,−1)

+
√

2 cos θe sin θe
[
eiφe (ρhad

−1,0 + ρhad
0,1) + e−iφe (ρhad

1,0 + ρhad
0,−1)

]
The angular dependence of cross section:

dσ

dMd cos θγ∗d cose
∝ Σ⊥(1 + cos2 θe) + Σ‖(1− cos2 θe)

where
Σ⊥ = ρhad

−1,−1 + ρhad
1,1, Σ‖ = 2ρhad

0,0.
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The Helicity Amplitude for R→ Nρ

The Rarita-Schwinger field

The Rarita-Schwinger fields ψµ1...µk which describe a particle of spin k+ 1
2

Corresponds to the(
1

2
,
1

2

)
⊗ · · · ⊗

(
1

2
,
1

2

)
︸ ︷︷ ︸

k representation for spin-1

⊗
((

1

2
, 0

)
⊕
(

0,
1

2

))
︸ ︷︷ ︸

Spin- 1
2

It is afflicted with extra lower spin degree of freedom e.g. 1
2⊗1 = 3

2⊕
1
2 ,

it can be cured by introducing:

The gauge conditions

ψµ → ψµ + i∂µχ, ψµν → ψµν +
i

2
(∂µχν + ∂νχµ)

V.Pascalutsa, “Quantization of an interacting spin-3/2 field and the Delta isobar”, Phys. Rev. D58, 096002 (1998)
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The Helicity Amplitude for R→ Nρ

The effective Lagrangian for R−N − ρ interaction

The Lagrangian for R1/2 − π − γ interaction

L(1)
R1/2Nγ

= −g′RNγψRΓ̃γµψNAµ,

L(2)
R1/2Nγ

=
gRNγ
2mρ

ψRσ
µνΓ̃ψNFµν + H.c.

ΨR: The spin-1
2 resonance operator forN(1440)

(
1
2

+
)

, N(1535)
(

1
2

−
)

,

N(1650)
(

1
2

−
)

Aµ: Gamma photon or ρ meson

Γ = γ5 for JP = 1/2−, Γ = 1 for JP = 1/2+

(M. Zetenyi and Gy. Wolf, Phys. Rev. C 86 (2012) 065209)
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The Helicity Amplitude for R→ Nρ

The effective Lagrangian for R−N − ρ interaction

The Lagrangians for R3/2 − π − γ interaction

LG1
RNγ = − ig1

4m2
N

[ψ
νO3/2

(µ)ν(∂)Γγλψ + ψγλΓO3/2
(µ)ν(∂)ψν ]F λµ,

LG.2RNγ = − g2

8m3
N

ΨµΓ∂νψF
µν +H.c,

LG3
RNγ = − g3

8m3
N

[ΨµΓψ + ψΓΨµ]∂νF
µν .

Ψν : The spin-3
2 resonance operator for N(1520)

(
3
2

−
)

O3/2 is the projection operator which eliminates the lower-spin degree
of freedom

Γ = γ5 for JP = 3/2+, Γ = 1 for JP = 3/2−
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The Helicity Amplitude for R→ Nρ

The colinear amplitude for R→ Nρ

The master formula

〈pθφ, λ1λ2|M
∣∣J±M〉 = 〈pẑ, λ1λ2|M

∣∣J±M〉DJ
M,λ1−λ2(Ω)∗

With the help of effective interaction lagrangian, we can calculate the colin-
ear amplitude for the resonance decay into nucleon and rho meson. Define

AJ±λ1λ2 ≡ 〈pẑ, λ1λ2|M
∣∣J±M〉

The colinear amplitudeA
1/2±
−1/2,−1

A
1/2±
1/2,0

 = i
√
m2
∓ −m2

γ


√

2m±mρ −
√

2

−mγ
mρ

±m±
mγ


gRNγ
g′RNγ


where m± ≡ mR ±mN
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The Helicity Amplitude for R→ Nρ

The amplitude for R→ Nρ

In a similar fashion
(
A

3/2±
1/2,−1,A

3/2±
−1/2,−1,A

3/2±
1/2,0

)T
is given as


± i

4
mRmNm∓

mR
16

(m2
γ −m+m−) −

mRm
2
γ

8

imN
4
√

3
(m+m− +m2

γ + 3mRm∓) ± mR
16
√

3
(m2

γ −m+m−) ∓
mRm

2
γ

8
√

3
)

± i
√

3
2
√

2
mRmNmγ

mγ

8
√

6
(m2
∓ ∓ 2mNmR −m2

γ)
mγ

8
√

6
(m+m− +m2

γ − 4mRm∓)


× (g1, g2, g3)

T

We can obtain the angle dependence amplitude by multiplying the correct
Wigner-D function, for example

A
3/2±
1/2,−1(θ, φ = 0) = ± i

4
mRmNm∓cos3

(
θ

2

)
g1 + · · ·
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The Helicity Amplitude for R→ Nρ

Back to the density matrix

With the angle dependent helicity amplitudes

AMλNλγ(θ, φ) ≡ 〈kN , θφ, λNλγ |M |JM〉

The density matrix

ρλλ′ =
∑
M,λN

pMAMλNλA
M∗
λNλ′

, p 1
2

= p− 1
2

=
1

2

where pM stands for the probability for the resonance in
∣∣3

2 ,M
〉

state.

ρλλ′ is given in terms of mR,mN ,mρ where m2
R is equal to (pπ+pN )2

of the original 2→ 2 process

ρλλ′ can be extracted from the measured cross section for e+e− pro-
duction
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The Helicity Amplitude for R→ Nρ

The extracted density matrix of ρ production

Data dots are experimental results from HADES collaboration

We assume that the ρ-mesons are produced by N(1520), for now we
only kept contribution from coupling constant g1
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Summary

Summary

The cross section can be divided into angular dependent and angular
independent (dynamic) parts. The angular dependent part is model
independent
After dividing the process into consecutive stages, the hadronic de-
cay amplitude can be calculated using effective Lagrangian. Angular
dependence + decay amplitude → density matrix.
Inversely, by comparing the experimental data and prediction, we can
obtain information about the intermediate resonance, like what we did
for N(1520) decay.

Future work
Contribution from Lagrangians with g2, g3 will be considered to give a
better fit to extracted density matrix
At higher energy more resonance states with higher spin will be taken
into consideration
We could also take two-pion production into our model, the statistical
error will be reduced greatly

E. Speranza, M. Z., B. Friman, PLB 764 (2017) 282.
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