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The problem

One would like to access the particle content of a strongly interacting theory from 
lattice calculations

• What is measurable on the lattice is the propagator, 𝐺

• Particle mass information is encoded in the spectral function, 𝜌

• They are related by the integral transform:
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The problem

𝐺 𝜏, 𝑘 = න
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• We need to invert this relation

• G is obtained by numerics, contains noise
we assume 𝐺 = 𝐺0 + 𝑧𝜉 𝐺0,
where 𝜉 is gaussian noise, z is the amplitude (0, 10−3 . . . 10−1)

• For the purpose if this study we assume the following form of the spectral 
function:

𝜌 𝜔 =

𝑘

𝑐𝑘𝛿(𝜔 −𝑚𝑘)
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The problem

For the purpose if this study we assume the following form of the 
spectral function:

𝜌 𝜔 =

𝑘

𝑐𝑘𝛿(𝜔 −𝑚𝑘)

The discretized propagator then:

𝐺𝑛 =

𝑘

ǁ𝑐𝑘 cosh
𝛽

2
− 𝜏𝑛 𝑚𝑘

Where:

ǁ𝑐𝑘 = sinh
𝛽𝑚0

2
/ sinh

𝛽𝑚𝑘

2

𝜏𝑛 =
𝛽𝑛

𝑁𝜏
, 𝑛 = {0, 1, … , 𝑁𝜏 − 1}
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Example case

𝛽𝑚0 = 6, 𝑐 = 1, 0.1, 0.1, 0.1 ,
𝑚𝑖

𝑚0
= 1, 2.2, 3, 4 , 𝑁𝜏 = 64
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Methods

In this contribution we compare the following methods for 
reconstructing the peaks in the spectral function:

• Direct 𝜒2 fit

• Maximum Entropy Method

• Deep Neural network
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Direct 𝜒2 fit

We assume the trial function:

𝐺 𝐴,𝑚, 𝑥 =

𝑖

𝐴𝑖cosh(𝑚𝑖𝑥)

And minimize the following functional:

𝜒2 = 

𝑛=0

𝑁𝜏
𝐺 𝐴,𝑚, 𝜏𝑛 − 𝐺𝑛

2

𝜎𝑛
2

Where 𝜎𝑛
2 = 𝑧2𝐺𝑛

(0)
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Direct 𝜒2 fit

Problems of this approach:

• Very sensitive to the initial guess

• Can reproduce the datapoints very 
precisely, with very wrong or 
unphysical parameters
(like negative amplitude!)

• By adding noise, we start to loose 
peaks

𝑎𝑛𝑠𝑎𝑡𝑧: 𝑚𝑛 = ቊ
𝑚0 1 + 1.0𝑛

𝑚0 1 + 0.9𝑛
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Direct 𝜒2 fit

To sum up:

• Cannot reliably predict the parameters even for a exactly given data

• Very wide distribution of errors

• Near peaks cannot be resolved because numerical sensitivity
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Maximum Entropy Method

The spectral function is constrained by physics:
𝜌 𝜔 > 0, 𝑘 > 0

This translates to a monotonity requirement for 𝐺𝑛

We can enforce this, by extending the 𝜒2 cost function:

𝜒2 = 𝜒2 𝐴,𝑚 + 𝛼𝑆𝑆𝐽 𝐴

where, the Shannon entropy term is:

𝑆𝑆𝐽 =

𝑚

𝜌𝑚 ln
𝜌𝑚

𝜌𝑚
(0)

− 1 , 𝜌𝑚 = 𝜌(𝜔𝑚)

20 06 2019 - Tihany Dániel Berényi 13



Maximum Entropy Method

𝜒2 = 𝜒2 𝐴,𝑚 + 𝛼𝑆𝑆𝐽 𝐴

After algebraic transformations we arrive at:

𝜒2 =
𝛼

2
𝜎𝑛
2𝑍𝑛

2 − 𝐺𝑛𝑍𝑛 + 𝜌𝑘
0
𝑒𝑍𝑛𝐾𝑛𝑘

Where:

𝜌𝑘 = 𝜌𝑘
0
𝑒𝑍𝑛𝐾𝑛𝑘

𝐾𝑛𝑘 = cosh
1

2
−

𝑛

𝑁𝜏

𝑘

𝑁𝜔
𝜔𝑚𝑎𝑥

Instead of 𝑁𝜔 size we need to solve 𝑁𝜏
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Maximum Entropy Method

Results:

• Somewhat smaller errors

• Non-negative peak amplitudes

• 3rd peak is missing frequently

• Very precise arithmetic is needed (𝛼 need to be tuned)

But, it works even if the precise form of the spectral function is not known
(e.g. number of peaks)
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Mem and 𝜒2

• High noise case:
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Deep Neural Networks

Neural Networks are a new tool for prediction/fitting tasks

• A Neural Network is just a differentiable function composition sequence,
that have parameters inside, that we minimize against some cost function

• Due to its universal approximator properties,
they can be optimized to fit large classes of functions

• In this method we do NOT assume any functional form, we construct a network,
and feed in input-output data pairs
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Deep Neural Networks

Parameters Functions

Input

Parameters Functions Output

𝑥𝑖

𝑔 𝑓 𝑜

𝑤, 𝑏

𝑤, b

𝑜 = 𝑓 ∘ 𝑔 𝑥𝑖

𝑦𝑘 𝑧𝑙

𝑦𝑘 = 𝑔 

𝑖

𝑤𝑖𝑘𝑥𝑖 + 𝑏𝑘 𝑧𝑙 = 𝑓 

𝑘

𝑤𝑘𝑙𝑦𝑘 + 𝑏𝑙
𝑛𝑒𝑡 = 𝑓 ∘ 𝑔
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Deep Neural Networks

• At the end we use some loss function, like:

𝐿0(𝑢, 𝑣) =
1

2
𝑢 − 𝑣 2

• If we fix the expected output (o) in the cost we have:
𝐿 𝑣 = 𝐿0(𝑜, 𝑣)

• So now we have the composition:
𝑒 𝑥 = (𝐿 ∘ 𝑓 ∘ 𝑔)(𝑥)

• And we would like to minimize it:
𝜕𝑒

𝜕𝑤𝑖𝑗
= 0

𝜕𝑒

𝜕𝑏𝑖
= 0
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Deep Neural Networks

Most of the methods are variations of the Gradient Descent:

𝑤(𝑛+1) = 𝑤(𝑛) − 𝛼 ⋅
𝜕𝑒

𝜕𝑤
where 𝛼 is the „learning rate”

Automatic differentiation can be used to produce the required 
gradients at each function in the net (“back propagation”)

𝑒(𝑤)
𝜕𝑒

𝜕𝑤

−𝛼 ⋅
𝜕𝑒

𝜕𝑤
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Deep Neural Networks

When training, we take some examples from the “training set”

𝑠𝑞 = (𝑥𝑖𝑞 , 𝑜𝑞), 𝑞 = 1 … 𝑁

and perform an update of the weights:

𝑤(𝑛+1) = 𝑤(𝑛) − 𝛼 ⋅

𝑞

𝑛
𝜕𝑒(𝑥𝑖𝑞)

𝜕𝑤

And repeat until we reach some low enough cost. 

𝑒(𝑤)
𝜕𝑒

𝜕𝑤

−𝛼 ⋅
𝜕𝑒

𝜕𝑤
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Deep Neural Networks

In our case:

• we generated large number (400k) of 3 component propagator 
realizations with different noise

• Took some network of composed affine transformations (4-6 layers)

• Trained to predict the {𝐴𝑘 , 𝑚𝑘} parameters

• We did some preprocessing (folding G in half, augmentimg the
dataset with logG, integral of logG and the fourier transform of logG)
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Deep Neural Networks
Sample training data:
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Deep Neural Networks

Relative error of amplitude prediction (%)

Relative error of mass prediction (%)

Distributions over a 10k test set

m1

m2

m3

Fitted m1

Fitted m2

Fitted m3
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Deep Neural Networks

                                                             

                                                                        

                                                                            

                                                                       

                                                                         

                                                                          

                                                                               

                                                                       

                                                                        

                                                                        

                                                                               

                                                                        

                                                                        

                                                                           

                                                                              

                                                                      

                                                                       

                                 

     

   

     

      

     

      

     

      

    

    

    

     

Selected subset of 4 propagators with different noise
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Deep Neural Networks compared to mem and 𝜒2
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Deep Neural Networks

Important problem of Neural Networks:

• Hard to characterize / estimate prediction errors

Possible solution:

• Monte-Carlo estimation

Question:

• Does small changes in input translate to small changes in the 
predicted parameters?
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Deep Neural Networks 10k realization of the same propagator 
with z = 5 ⋅ 10−3 noise

Relative error of parameters (%)
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Deep Neural Networks 1k +/-1% perturbation of m1 in the 
same propagator with z = 0 noise
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Deep Neural Networks
Observations:

• Neural Networks predict the parameters of the spectral function in 
the range of 5-15% even for unrealistically large noise (𝑧 = 10−1)

• Noise sensitivity can be mitigated by ensemble statistics

• Mispredictions seems to be systematic

Further observations

• The method scales moderately
with lattice size:

Lattice size Average error

8 10.493

16 8.735

32 8.558

64 8.374

128 8.063
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Deep Neural Networks – noise tolerance
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Deep Neural Networks - exrapolation

We are also interested in resonances…

So instead of:

𝜌 𝜔 =

𝑘

𝑐𝑘𝛿(𝜔 −𝑚𝑘)

We might consider:

𝜌 𝜔 =
𝜔2

σ𝑘
𝑤𝑘

𝜔2−𝑚𝑘
2

2
−1
+𝜔2
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Deep Neural Networks - extrapolation
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Deep Neural Networks - extrapolation
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As the width goes to zero, we recover the distinct peak structure, also, 
the propagators are similar in this limit:



Deep Neural Networks - extrapolation
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Conclusion
• Neural Networks can be considered as a tool for approximating 

unknown functions, e.g. inverting integral transformations by 
observing input-output pairs

• While learning directly from data, a priori information is still present, 
it is now encoded in the training set and the network architecture 
(topology)

• However, if the training set can be set up to reasonably span the 
expected set of values of interest, the method seems to be reliable 
and outperform other methods especially for noisy data
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