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@ Introduction
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What are bound states?

o Nonrelativistic case: Schrédinger-equation with A Hamilton-operator
Hv = Ev

Interpretation: W(xi,...x,) wave function of the constituents, E is the energy of
the bound state (discrete spectrum)

@ Particle physics: Feynman diagrams for particle creation
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Interpretation: bound state is a particle with definite mass (and eventually
lifetime)

~/=\

What is the common language of atomic and particle physics?
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© Equations for the relativistic bound states
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Poles of the scattering amplitudes

Subdiagram: long lifetime = pole behaviour of the scattering amplitude
= 2-fermion ¢ + x — 1 + x scattering

p q p q p q
4 l—q l—p {—q {—p {—q

Mathematically: effective (1PI) action for the fermions, integrating out all other fields

d*p d*q d%
['4— fermion _/p{w’c(w wP+X ( )XP] +/(27T) (27‘1’)4( )4>‘po¢'y qﬁawpawqﬁ)([ pfyXZ q,0;

where ) is the 2-2 scattering amplitude. Bound states are poles of \.
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Explicit bound/auxiliary states

We should use hadrons, not quark scattering amplitudes. . .

ler = /
P

Ansatz:

WIEp, + xS X+ZHTIC ) Hyn | +

n o T ¢
+Z/[ [Henwlavpggx@,p,ﬂ +H X gar}ﬁwp,ﬁ} _
n pe

@ original fermion fields
@ many auxiliary fields H,, with momentum ¢

® Yukawa couplings v{/; (symmetries!)
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Equivalence of 4-fermion amplitudes

to avoid double counting: the two actions should provide the same 4-fermion amplitude

gy
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Equivalence of 4-fermion amplitudes

to avoid double counting: the two actions should provide the same 4-fermion amplitude

_ Vi (H), ten
}::i >>=<:< = )‘P‘W qBo = E :Vpgv Gin Voo
n
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Equivalence of 4-fermion amplitudes

to avoid double counting: the two actions should provide the same 4-fermion amplitude

_ vén (H) yien

It is fulfilled if v"_ is the “eigenvector’ of \’

o Suppressing lower indices

pay,qBo

L. ln H n
vl = fGén )ve

formally equivalent to the Schrédinger-equation!
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The relativistic analogue of the Schrodinger-equation

Afvén _ —GZ(:I)VZH or (AZ)—lvén _ _]Cé:l)vén

@ role of the Hamiltonian A — A*: 4-fermion proper vertices
@ role of the energy levels E — lcg’:): momentum dependent kernel /self-energy
@ role of the (two-particle) wave function W — v*: momentum dependent

Yukawa-couplings
index is not just space, but space and time (and other internal indices)

@ generalizabe to n-particle bound states!
e BUT while A is known, A must also be calculated!
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e Computing the scattering amplitude
@ Dyson-Schwinger resummation
@ Functional Renormalization Group (FRG) equations
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e Computing the scattering amplitude
@ Dyson-Schwinger resummation
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Dyson-Schwinger resummation

1-particle propagator: DS series

O OO - — O

where the bubble means self-energy (1PI) diagrams

2-particle propagation: DS series (Bethe-Salpeter series)

- - - (Or- 0

where the bubble means fermion-2PI diagrams
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Bound states of QED

Model: QED with 2 fermion species
- 1
L =1(y, (10" — eA*) — my)p + X(7, (10" + eA*) —my)x — = F . F*.

4
2-2 scattering amplitude:
¢ _ _ oD of ¢
/\Pa’Y;qBU - = - <wlpw5qu,£7p)(0,l—q>
amputated

Ladder resummation:
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Bethe-Salpeter equation

For matrix notation use multi-indices

—

Diagram elements: V= § roe =056l (p— q)Vys Gap = ! xd(p — q).

t—p

—_—

Ladder resummation: A=V —VGA = ‘)\ =(1+VG)"lv ‘

Bound states: A has poles when VG has a —1 eigenvalue

VGv = —v Bethe-Salpeter equation
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Example: nonrelativistic approximation

020

ﬁ’ (p —m?)( K p)? — M?)’

. d*q 1 1
R R e e e o T

spinless particles: V = then the BS-equation:

nonrelativistic case:
1 1
@ omit retardation, then — = v(po,p).
(p—q)? (p—a)? (¢b.P)
1 1 i

int I b f d: ~
@ qo integral can be performe /qo g e gy oA e

(= (£p,0), E=m+M—ty, m_i=m*t+M?
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Nonrelativistic approximation

d’q v(a)
27)* (p - q)?(E + 52-)

2Meq

We arrive at  v(p) = 47ra/(

Introducing v(q) = (E + q?/2m,.q)¥(q) we find:
2 3
R _ d°q  V(q)
(E+ T W(p) = 47Ta/ 277 (p—q)
And finally, with inverse Fourier-transformation:

(30 + %) vl = Ew()

2Myed r

Nonrelativistic BS-equation is equivalent to the Schrédinger-equation
wave function ~ Bethe-Salpeter amplitude
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e Computing the scattering amplitude

@ Functional Renormalization Group (FRG) equations
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The Functional Renormalization Group

Idea of RG: gradual dressing of the interactions with quantum /statistical fluctuations:
we start with the classical action in UV and reveal the 1Pl action in the IR.

Wetterich equation:
1
Ol = 5 STr O R(T® + R,
where
o [, is the effective action at scale k, M—p = Sy
@ Ry(p) is the quadratic regulator kernel
d*p .
S—5- /(27T)4 ®*(p)Re(p)®(p)

vanishes in the IR (Rc_0(p) = 0) and stops fluctuations in the UV (Ri=n(p) ~ o0)

@ technically: one-loop expression

Exact equation!
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FRG approach in bound state study

FRG is an exact equation
= must give an account for the bound states, too.
Precedent works

o [Ellwanger94]: FRG eq. for 4-point function

@ [Gies02]: local approximation, generalized Hubbard-Stratonovich transformations,
(partial) fixed points

@ [Florchinger09,10]: generalized Hubbard-Stratonovich transformation for
composite operators

e [Diehl10]: FRG equations to study BEC-BCS crossover
@ [Rosel6]: bound states in SSB ®* model with BMW.
@ [Alkofer18]: dynamical hadronization with DSE4+-FRG methods.
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FRG in the 4-fermion interacting action

Ansatz: nonlocal 4-fermion interaction instead of gauge interaction
(integrate out photons from QED)

[ 4— fermion = / {w,t/C,(ﬂ’)wp + X,T,/Cf,")xp} + /
p

£ T
) AP071QBUw;a¢q5X@—p,’yXZ*q,U‘
P.d,

FRG equation in graphical representation

p

N

pay,qBo —

I
1
I
A e O m——— -
I

t—p

s-channel approximation: A= -XANG)A = XN '=0G
Solution:

A= (1+VG) V.|

Same as in the BS case! (Eiwanger, Wetterich)
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FRG equation for the bound states

Ansatz: auxiliary fields with nonlocal Yukawa interaction:

Feff = / [zp;/cgw)% + By, + Z HE K Hp | + Z/ [Henthh o VemsXi—p.5 + hoc] .
P

@ we must not use direct FRG equations! — they do not reproduce BS-equations
@ use FRG of the 4-fermion theory to derive equations for the representing modes!
@ logics:

limination FRG H—representation
—

reff[k7 71}7 H] Hie_> I—471‘"ermion[k7 ¢] — r47fermion[k - dk7 QZ}] reff[k - dk7 71}7 H]
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FRG equation for the bound states

Ansatz: auxiliary fields with nonlocal Yukawa interaction:

Feff = / [zp;/cgw)% + By, + Z HE K Hp | + Z/ [Henthh o VemsXi—p.5 + hoc] .
P

@ we must not use direct FRG equations! — they do not reproduce BS-equations
@ use FRG of the 4-fermion theory to derive equations for the representing modes!

@ logics:
H—elimination FRG H—representation
reff[k7 71}7 H] ‘ I_4 fermlon[k QZ}] — r4 fermlon[k dk QZ}] P_> =

@ k-derivative of the eigenvalue equations yields:

T £
v, (O A vyp
Ok Gé(rl;l) = Vzn(akkg)vﬁnv OkVin = E MV[m.
m#n  “in ‘m

reff[k - dk7¢7 H]

(like QM pert. th.)
use FRG equation for A to make these equations explicit
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Complete FRG equations with crossing symmetry

In BS approximation (s-channel) the matrix elements are simple

T Y4
v, (0kG )Ven
O = (DG Wen Oven =Y MVM

H H
m#n ’Cém) - ’CEn)
Complete treatment with crossing symmetry is more complicated
Gin G (G Yen — L

8k"[n - V[m
(H) (H)
m#n G@n - GZm
where (m' = (m,{+r —q), n' = (n",(+r —p))
l 0% 042 H *
L = [gzx’y V[’J-’wa Gﬁn’ Vrﬂ’ (6 g) ,6’:7’,(31'7 rnoc 'yGr(w’ ) (;160" Vqﬂo"

= Technically involved, but theoretically correct.

Could we make some simplifications?
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Nonrelativistic limit

Scale dependent kernel

@ Regularize the classical 2-fermion propagator

P=0(p— K + Ok —p)k* = Gipg = £2%
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Nonrelativistic limit

Scale dependent kernel

@ Regularize the classical 2-fermion propagator

P=0(p— K + Ok —p)k* = Gipg = £2%

e FRG equation for A\, ' (4-fermion interaction)

1 2k
8k>‘k = 0kGk = *mpka

where Py pq = ©(k — p)dpq projector.
Initial condition: Aj_,oo =V
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Nonrelativistic limit

Scale dependent kernel

@ Regularize the classical 2-fermion propagator

P=0(p— K + Ok —p)k* = Gipg = £2%

e FRG equation for A\, ' (4-fermion interaction)

2k
AL = 04G = ———— Py,
2y ey (E+ K22 K
where Py pq = ©(k — p)dpq projector.
Initial condition: Aj_,oo =V

@ Solution
M(E) = (1+VG) Vv
Al = i, and A (E = E,) — oo singular.
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Nonrelativistic limit

Scale dependent kernel
Eigenmode representation
° Regularlze the classical 2-fermi

P S W Gl e Represent A, with its eigensystem
T =

A_l = - Ki,nXk,n ® XT n
@ FRG equation for A\, ! (4-fermic : ; o “

ALY = 8 Gk = - Differential equation for the eigensystem:

— gl
where Py ,q = ©(k — p)dpq projec OkKokn = =X, nakgkx" i

Initial condition: A =V x| OkG KXk,
k— oo akxk n= Z ’CI:(m n
o

Xk, m-

7I‘Y‘l

@ Solution

A(E) = (1 +VGy) Initial conditions at large k (denote n — ro)
1

V(ro)

are eigenvectors/values of the inverse potential!

)\L = Mg, and )\k(E = En) — 00 ¢ Xnp = elpro, IC,, =
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Numerical study

Numerical study

Discretization for s-channel (1D) with 7(p) = pv(|p|)

pe={+L)dp, £=1...N, iy, =1/ Bna(pe)
pe<k
Cnm

Ko—Km'
Differential equation (a, = 2k(E + k?)~2).

C= 77T77, Dnm =

ak’Cn = —Q Cnna akn = _aknD
Initial conditions at A = Ndp: eigensystem of potential
vio L
E + A2
Bound states if at k — 0: K,(E,) = 0.

In present example: N = 800, dp = 0.003.
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Numerical study

Numerical study

DYy Scale dependence of the eigenvalues )
pe=( K
pe<k
IOF
. F
Differ

777 k
// /{ 1.0 15 2.0
11 :
Initial /| :ential

—10f | /

C + I\
Bound states if at k — 0: K,(E,) = 0.
In present example: N = 800, dp = 0.003.
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Numerical study

Numerical study

Differ

Initial /| /, N 5
—10r | _sf \

Bound states if at k — ( 1ot
In present example: N = 00, G ="Urous: ]
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Numerical study

Numerical study
DYy Scale dependence of the eigenvalues

Spectrum at k =0

Differ

Initial

—100 | |

Bound states if at k — ( 1ot
In present example: N = 00, G ="Urous:

. . . . . T
1 2 3 4 5 6

v
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How many bound states are needed?

We do not need to keep all the eigenvectors for a reasonable precision

Bound state energies

4E)™ 2 For the ground state:
;: \ e four eigenvectors: 1%
st @ three eigenvectors: 8%
44 @ two eigenvectors: 28%
2 @ one eigenvector (only the
. ground state) is not enough!
% 0 40 6 80 100 )

Generalization

We may hope that this remains true in the full relativistic case = it is enough to
use a reduced set of eigenvectors!
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@ Bound states in NJL model
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The fundamental action
Mo = /d4X [@’Ymamll) + 2 (YrvR) (YRYL) — ;)\v(?/;’ymlﬁ)z} .

Is there a bound state in the symmetric phase? The corresponding Ansatz:

P = [ d* [Birimdmts = IA(Bymth)? + 200 (Frion)(B) + 35 (93(x) + 03(x))”]
+5 [ dx [ dy [050T 2 (x = y)®s(y) + Ps()ME (x = y) s ()]
—i [dx [dx [ dxoDc(x — x1,x — x2) [Ps(x)P(x1)(x2) — iP5 (x) P (x1 )15 (x2)] -

o scalar kernels: T'?(q) = Zcq? + M2 =T (q).
@ 4-fermion interaction (local) + nonlocal, resonant channel

@ Ansatz for nonlocal vertex: Ac(qi,q2) = gcefﬁ(ql*qr‘?)ze*‘)‘(qr‘”)2
for simplicity o = 3; physically o ~ R?

Balaton Workshop 2019 June 17-21, 2019. 27



Wetterich-equation for fermion + boson systems (t = log k/ ko)

1 1
07 = —Trlog ' + 5 Trlog r 4 5 Trlog(l — Gel'2 Grr)).

@ rescale parameters with appropriate powers of k
@ equations for couplings (gc, A\, As, A\v), dimensionful quantities (M, a, Q)
@ wave function renormalization — anomalous dimensions ¢, 7.

Fixed points:

@ strongly coupled UV fixed point (6%

or?

M) = (672,27)
o IR fixed point: Gaussian; 4-fermion couplings are irrelevant, gc, and )\ have mild
scale dependence (|t|71, [t|72).
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Evolution of scale dependent quantities

Renormalization condition:
@ changing @ = change the separation of the two fundamental particles

@ change in « should have an effect only on the IR quantities

o we should keep the UV evolution independent on the choice of a.

Mc?(H)-Mc?(0)

« dependence of the mass 0.005
@ in UV the same behavior (renormalization) Q4
0.0

@ a = co: no IR scale dependence 0.00

@ decreasing « yields decreasing mass: binding 0.001

6 -5 -4 -3/ -2 -1 t
-0.001

energy
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« dependence of the binding energy

tunable parameters are a ~ R? and dM?/dt initial slope

AMG?

-0.005

-0.010

|

-0.015}
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« dependence of the binding energy

tunable parameters are a ~ R? and dM?/dt initial slope

AMGP/C
‘ ‘ ‘ ‘ ‘ b Ara+Az
0 ~2_ 3 4 5

K///,/,, ~0.2

/ o4

08 1.0 1.5 20 25 30 35
_o.oos—% .
rescaling
— -0.6
-0.010¢! -0.8

-1.0

-0.015}

Balaton Workshop 2019 June 17-21, 2019. 30



« dependence of the binding energy

tunable parameters are a ~ R? and dM?/dt initial slope

MM AMZIC
‘ N ‘ ‘ Ca Loy Ara+Ay
0 ~2 3 4 5 05 1.0 15 2.0 25 3.0 35
K//// -02
_0.0057% ) -0.4
rescaling
N -06
-0.010p: -0.8
-1.0
-0.015}

@ physics remains invariant under changing the actual slope

@ we find minimum of the binding energy at a nontrivial scale
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© Conclusions

Balaton Workshop 2019 June 17-21, 2019. 31



Conclusions

@ Nonrelativistic “Schrodinger-equation”

Av = —GHy,
where X is the proper 4-fermion vertex, v is the Yukawa coupling between the
bound states and fundamental fermions, G(*) is the bound state propagator

@ calculation of A: BS equations, or FRG equations
@ reduced set of eigensates may be enough for a fair precision

@ using these ideas in NJL model symmetric phase: convincing indications for an
attractive potential
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Multi-indices

@ internal states are 2-particle states with momenta/spin: (p, ), (p — ¢, 3)
= a={paf} multi-index, ¢ “spectator” index

@ rungs and 2-particle propagation depend on momenta
. ¢
(p,),(P—2¢,8),(q,7),(g—¢,6) = can be represented as a matrix Mgb)

@ Scalar product: f(O)g(®) Z/(zﬂ 7 pa'y pa’y

Balaton Workshop 2019 June 17-21, 2019. 33



Numerical study

Numerical solution

equation:

(A + %)\U(X) =EV¥(x) = E, = — (4E,)" Y2 =n

4n2
Bethe-Salpeter version (Fourier-trf, v = (p? + E)V)
d*p v(p)
v(g) = / _
D= ) @ (e B)
s-channel: rotational invariance n(p) = pv(|p|)

/dp log

7 pE+MMM

q+p‘ 1
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Numerical solution

Numerical study
equation: Discretization

1 _ e .. ~ 1 ~
A+ Hw) = Bv) = E DISCI'.etlzatI0f.1 pm = (m+ 3)dp, nm = 1(pm) leads to the
X matrix equation

Bethe-Salpeter version (Fourie = VG(Em,

d3
V(q) = /(27T) ( Gom = T Eip Vi = (1 - 6nm) In

s-channel: rotational invarianc Strategy: eigenvalues ),, bound states if \,(E,) = 1.

q+p 1
dplo =
g—p| E+p?

248 4 G, (41 +2)

n(p)-
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Numerical solution

Numerical study
equation: Discretization

1 - = D . . = 1 I = - I h
(A+2)W(x) = EW(x) = E |scr.et|zat|or.1 P (m+3)dp, 1 n(pm) leads to the
X matrix equation

S CEET . - SO

A n=(1=G6ym)In
20

"*"" + Opm In(4n + 2)

n—m

S_

lues \,, bound states if \,(E,) = 1.
1.5

10

0.5¢
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Numerical solution

Numerical study
equation: Discretization

1 - = D . . = 1 I = - I h
(A+2)W(x) = EW(x) = E |scr.et|zat|or.1 P (m+3)dp, 1 n(pm) leads to the
X matrix equation

¥ Eigenvalues n =VG(E)n,

Spectrum
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Wetterich equation

Generating functional
Wil — /Dd> o Sel®]—% [ & Red+[ Jo

differentiate wrt. k:

— O Wi [J]e™ Wi [J] — R (p /’D¢¢ (p)®(p)e —Sg[o]— ]‘¢*Rk¢+j'J¢'

(2 )d

RHS is a 2-point function: (¢®) — ngVJ

Equation for the quantum effective action 'i[p]:

1 1 _
=3 ()= smanc -
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Peculiarities of the FRG approximation we will use:
e regularize only the matter sector, leave gauge sector unregularized (appropriate in
QED: all diagrams are regularized)
@ do not run QED couplings (agep ~ const, at m, scale; bound states are at o
smaller energies)
@ use nonlocal Ansatze: it turns out to be crucial for representation of bound
states.
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