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Plane Gravitational Waves

4d exact plane gravitational waves (GWs) in Brinkmann (B)
coordinates Xµ = {X+,X−,U,V } 1,

gB
µνdX

µdX ν = δijdX
idX j + 2dUdV + Kij(U)X iX jdU2, (1a)

KijX
iX j =

1

2
A+(U)

(
(X+)2 − (X−)2

)
+A×X+X−, (1b)

where i , j = ± and U,V light cone coordinates.

• Kij(U) is the profile of GW.

• A+(U) and A×(U): polarization state amplitudes.

• (1) is linearly polarized if A× (or A+) is vanishing.

1M. W. Brinkmann, 1925



Matrix K (U) is symmetric and traceless:

(
Kij(U)

)
=

1

2

(
A+(U) A×(U)
A×(U) −A+(U)

)
, (2)

• Non-vanishing components of the Riemann tensor for (1) are

R i
UjU = −RV

ijU = −Kij . (3)

• Since tr(K) = 0, (1) is Ricci flat, i.e., Rµν = 0.
It is a vacuum solution of Einstein’s equation.

Geodesic Lagrangian for a spinless, test particle is written as

LB =
1

2
gB
µν

dXµ

dσ

dX ν

dσ
=

1

2

[(dX i

dσ

)2
+ 2

dU

dσ

dV

dσ
+ KijX

iX j
(dU
dσ

)2
]

(4)
where σ is an affine parameter.



Euler-Lagrange equations derived from (4)

d2X
dσ2

= K (U)X ,
d2U

dσ2
= 0,

d2V

dσ2
= ... (5)

They match
d2Xµ

dσ2
+ Γµαβ

dXα

dσ

dX β

dσ
= 0. (6)

• Transverse plane: X± = X±(U), anisotropic, U−dependent
attractive/repulsive oscillators.

• U itself can be considered as the affine parameter.

• V− equation can be solved once X±(U) is found:

V (U) = −1

2
X · dX

dU
+ C1U + C2, (7)

where C1 and C2 are constants.



Periodic GWs

• Particular periodic profile:
A+(U) = A0 cosωU, A×(U) = B0 cos(ωU − φ)

• If A× = 0: linearly polarized periodic (LPP) GW,

• If A0 = B0 and φ = π/2: circularly polarized periodic (CPP)
GW,

K =
A0

2

(
cosωU sinωU
sinωU − cosωU

)
(8)

• Periodic GWs are sought in inflationary models2.

• They also exhibit exhibit memory effect3.

2B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations] 2017
3P.-M. Zhang, C. Duval and P. A. Horvathy, 2017



Symmetries

• General plane waves (2) admit a 5−parameter isometry
group.4,

• Identified as the Carroll group with broken rotations 5,

{ ∂
∂x i

,
∂

∂v
,H ij ∂

∂x j
− x i

∂

∂v
}, (9)

in Baldwin-Jeffery-Rosen (BJR) coordinates.

• However, for CPP case (8), the broken symmetries combine to
give a sixth symmetry,

ξ = ∂U +
ω

2
(X+∂− − X−∂+), Lξgµν = 0, (10)

called the screw symmetry.

4D. Kramer, H. Stephani, M. McCallum and E. Herlt 2003
5C. Duval, G. W. Gibbons, P. Horvathy and PM Zhang. 2017



Motivation

Ilderton6: Screw symmetric CPP GW (8) is the classical double
copy of Bialynicki-Birula’s electromagnetic vortex7.

• Clue: Both systems are screw symmetric.

• Tool: Classical double copy.

Question: Are there any other physical systems related to GWs?
Answer : Ion traps.

• The clue: Both motions boil down to anisotropic, time
dependent oscillators.

• The tool: Bargmann framework and the null geodesics therein.

Strictly speaking, “4d GW metric (1) is the Bargmann manifold of
a 2d NR harmonic oscillator.”

6A. Ilderton, 2018
7I. Bialynicki-Birula 2009



Planar Paul trap
Paul trap8:

• Charges and neutral particles can be trapped by electric or
magnetic quadrupole potentials,

• Even a single ion can be trapped for high accuracy
measurements,

• Functions as a mass spectrometer.

Linear Paul trap MOT container
8W. Paul, 1990



2d Paul trap quadrupole potential

Φ(X ) =
Φ0

2

(
(X+)2 − (X−)2

)
, ∇2Φ = 0. (11)

where X± are plane coordinates and Φ0 is a constant.

(11) allows harmonic motion in X+ but escaping motion along X−

axis. No stable motion, particle is lost.

To stabilize, a periodic voltage Γ0 cosωt is added:

Ẍ± = ∓
(
a− 2q cosωt

)
X± , Ẋ =

dX

dt
. (12)

t is NR time and ω is the oscillation frequency.

a = e
mΦ0 and q = e Γ0

2m constants.

Φ0, Γ0 at the order of few volts.

Experimentally interesting region: 0 < a, q < 1.



Rescale in order to put into standard Mathieu form, t → 2t
ω ,

Ẍ± = ∓
(
â− 2q̂ cos 2t

)
X± , (13)

with â = (4/ω2)a, q̂ = (4/ω2)q.

(13) are called the Mathieu equations.

They have both bounded and unbounded solutions.

Stable motion depends on the parameters a and q. For instance

a = 0, 0 < q < qmax = 0.92. (14)

Bounded solutions of (13) are given in terms of Mathieu functions
C (â, q̂, t) and S(â, q̂, t).



LPP GWs

Equations similar to (13) arise for particle motion in the spacetime
of a LPP GW

ds2 = δijdX
idX j +2dUdV +

1

2
A+(U)

(
(X+)2−(X−)2

)
dU2, (15)

with

A+ = A0 cos 2U, K =
A0

2

(
cos 2U 0

0 − cos 2U

)
. (16)

Transverse geodesic equations read

(X±)′′ = ±A0

2
(cos 2U)X±, (X±)′ =

dX±

dU
, (17)

which are (13) with a = 0.



Bound motions are described by C (A0,U) and S(A0,U).

Figure: In a weak linearly polarized periodic (LPP) wave, (16), the
transverse coordinate X (U) oscillates in a bounded “bow tie”-shaped
domain. The initial conditions are Ẋ+(U =0) = Ẋ−(U =0) = 0 (at rest
for U =0), at initial position X+(U =0) = 1, X−(U =0) = 0.



Bargmann framework

Bargmann framework9:

• (d + 1, 1) dimensional relativistic framework endowed with a
covariantly constant Killing vector ∂V to discuss the
symmetries of d dimensional NR systems

• Classical motions of the NR system will be the null geodesics.

We lift the 2d Paul trap (11) by putting −2Φ(X , t) to the UU
component of the metric, adding an extra coordinate V and
promoting t → U

gP
µνdX

µdX ν = dX 2 + 2dUdV − 2Φ(X ,U) dU2 , (18a)

Φ(X ,U) =
1

2
(a− 2q cos 2U)

(
(X+)

2 − (X−)
2
)
, (18b)

Observe ∇2Φ = 0 =⇒ Rµν = 0.
Bargmann metric of Paul trap is Ricci flat and it is a LPP GW.

9C. Duval, G. Burdet, H. P. Kunzle and M. Perrin 1985



Dynamics in 4d Bargmann manifold can be described via

LP =
1

2
gP
µν

dXµ

dσ

dX ν

dσ
. (19)

Identification of the canonical momenta

Pi =
dX i

dσ
, PU =

dV

dσ
− 2Φ

dU

dσ
, PV =

dU

dσ
= cons., (20)

leads to the Bargmann Hamiltonian as

H =
PiPi

2
+ PUPV + Φ(X ,U)P2

V . (21)

Recover NR motion by the null condition

H =
1

2
gµνPµPν ≡ 0, gµρgρν = δµν , (22)

yields the 2d Paul trap Hamiltonian, HNR

HNR =
PiPi

2
+ Φ(X ,U) = −PU , PV ≡ 1. (23)

U becomes NR time in (23) and equations (13) can be obtained.

Null condition (22) projects V (U) = V0 −
∫ U

LNR(X ,U ′)dU ′.



3− d Paul trap

3−dimensional quadrupole potential for the Paul trap:

Φ(X±, z , t) =
1

2

(
a + 2q cos 2t

)(
(X+)2 + (X−)2 − 2z2

)
, (24)

where a, q are the parameters.
The motion is described by three uncoupled Mathieu equations,

Ẍ± +
(
a + 2q cos 2t

)
X± = 0, (25a)

z̈ − 2
(
a + 2q cos 2t

)
z = 0 . (25b)

For a suitable range of parameters (a, q), bounded motions arise.

(24) can be lifted to 5d Bargmann space.

The quadratic form is traceless, ∇2Φ = 0 =⇒ Rµν = 0 :
Bargmann lift of the 3d Paul trap is a GW in 5d .



CPP GWs
We consider CPP GWs

ds2 = gijdX
idX j + 2dUdV + Kij(U)X iX jdU2, (26)

with ω = 2

K =
(
Kij) =

A0

2

(
cos 2U sin 2U
sin 2U − cos 2U

)
A0 = const > 0.

(27)
Geodesic equation for transverse plane (5):

(X+)′′ =
A0

2
(X+ cos 2U + X 2 sin 2U), (28a)

(X−)′′ =
A0

2
(X+ sin 2U − X 2 cos 2U) (28b)

Anisotropic and U dependent. Augmented with initial conditions,

rest at U = 0 i.e., X ′(0) = 0. (29)



Solve for the geodesic equations.

First step: Rotating frame trick(
X+

X−

)
=

(
cosU − sinU
sinU cosU

)(
Y +

Y−

)
. (30)

It allows a U-independent potential together with the “magnetic”
term ∓(Y±)′:

(Y±)′′ ∓ 2(Y∓)′ − Ω2
± Y

± = 0 where Ω2
± = 1± A0/2 , (31)

(29) becomes

Y ′(0) =

(
0 1
−1 0

)
Y0 =

(
0 1
−1 0

)
X0 , (32)



Second step: Chiral decomposition10:

• a general method for solving Hill type equations (31),

• it also provides the decomposed Hamiltonian and the
symplectic 2−form.

Find smart phase space coordinates {Z 1
±, Z

2
±}

Y + = Z 1
+ + Z 1

−, Y− = Z 2
+ + Z 2

−, (33a)

Π+ = Z 2
+ + Ω2

−Z
2
−, Π− = −Ω2

+Z
1
+ − Z 1

−, (33b)

where Π± = (Y±)′. They decompose σ and H as

σ = σ+ − σ− = −A0

2

[
dZ 1

+ ∧ dZ 2
+ − dZ 1

− ∧ dZ 2
−

]
, (34a)

H = H+ − H− =
A0

4

[(
Ω2

+Z
1
+Z

1
+ + Z 2

+Z
2
+

)
−
(
Z 1
−Z

1
− + Ω2

−Z
2
−Z

2
−
)]
.

(34b)

Note the relative minus sign in (34).

10P. D. Alvarez, J. Gomis, K. Kamimura and M. S. Plyuschay 2007, 2008



Solutions are found as

Y + = A cos Ω+U + B sin Ω+U + C cos Ω−U + D sin Ω−U,

(35a)

Y− = −Ω+(A sin Ω+U − B cos Ω+U)− 1

Ω−
(C sin Ω−U − D cos Ω−U).

(35b)

They match with Bialynicki - Birula’s EM vortex solutions.

• A0 < 2 both frequencies Ω± are real, motions are bounded.

• A0 > 2, Ω− becomes imaginary and the motion is unbounded.

• A0 = 2, one of the motions is free.



(i) (ii)
Figure: (i) In a sufficiently weak CPP GW (27) the transverse trajectory
of a particle initially at rest remains confined in a toroidal region.
(ii) For a strong wave the trajectory becomes unbounded. The initial
conditions are (X+)′(0) = (X−)′(0) = 0 and X+(0) = 1, X−(0) = 0.



3d Penning trap

Penning trap was developed by Dehmelt11.

An anisotropic but time independent quadrupole potential and a
uniform B = Bẑ as stabilizer,

Ψ = −
(ωz

2

)2
(

(Y +)2 + (Y−)2 − 2z2
)
, ∇2Ψ = 0, (36a)

A+ = −1

2
BY−, A− =

1

2
BY +, Az = 0 . (36b)

The Lagrangian of a charged particle inside the Penning trap:

L =
1

2
Ẏ 2 +

ωc

2
(Ẏ−Y + − Ẏ +Y−) +

1

4
ω2
z (Y 2 − 2z2) , (37)

where ωc = B is the cyclotron frequency. (̇) = d/dt, t is NR time.

11H. G. Dehmelt 1989



Equations of motion

Ÿ± ∓ ωc Ẏ
∓ − 1

2
ω2
z Y
± = 0 (38a)

z̈ + ω2
z z = 0 (38b)

(38) are similar to the CPP case (31) and can be solved
analytically.

Bounded, periodic solutions require ω2
z > 0 and ω2

c − 2ω2
z > 0.

Typically in an experiment ωc >> ωz .

For example: V0 = 10V , ωz ∼ 400MHz and ωc ∼ 103ωz .



(i) (ii)

Figure: Trajectory of a charged particle in a Penning Trap
(i) in 3D
(ii) its projection on the Y± plane.
Initial conditions are Y +(0) = 1.0, Ẏ +(0) = 0.0,Y−(0) = 0, Ẏ−(0) =
1.0, z(0) = 0, ż(0) = 0.2.



Bargmann lift of Penning trap

Form of (38a) is promising for a relation to CPP GWs.

We lift the non-relativistic motions in Penning trap to a 5d
Bargmann space with (Y , z ,U,V )

ds2 = dY 2 + dz2 + 2dU
(
dV + AidY

i
)
− 2Ψ dU2, (39)

whose null geodesics project consistently with (38).

To have a clear understanding, we eliminate the magnetic term Y +

Y−

z

 =

 cos ωc
2 U sin ωc

2 U 0
− sin ωc

2 U cos ωc
2 U 0

0 0 1

 X+

X−

z

 . (40)



We obtained the Bargmann metric of an axially symmetric
oscillator.

ds2 = dX 2 + 2dUdV − 2Φ dU2, (41a)

Φ =
1

8
(ω2

c − 2ω2
z )
[
(X+)2 + (X−)2

]
+

1

2
ω2
z z

2 , (41b)

(41) is not a CPP GW: it is not Ricci-flat ∇2Φ = ω2
c ≡ B2.

(38a) has the same frequency ωz for both Y± which means
A0 = 0 in CPP case (26).



Modified Penning trap

A modified version of the Penning trap with the same A (36b),

Ψ̃ = −(
ωz

2
)2
(

(1 +
ε

2
)(Y +)2 + (1− ε

2
)(Y−)2 − 2z2

)
(42a)

A± = ∓1

2
ωcY

∓, Az = At = 0 . (42b)

Perturbations ε << 1 breaks the axial symmetry12.

The equations of a charged particle in the modified trap:

Ÿ± ∓ ωc Ẏ
∓ − ω2

z

2

(
1± ε

2

)
Y± = 0, z̈ + ω2

z z = 0. (43)

Exactly in the same form as (31).

12Such imperfections are possible. See L.S. Brown and G. Gabrielse 1986.



Lifting to 5D Bargmann space (Y +,Y−, z ,U,V ), we obtain

ds2 = (dY +)2 +(dY−)2 +dz2 +2dU(dV +AidY
i )−2Ψ̃dU2 (44)

To remove the magnetic term, we perform the 3d rotation (40).

We also rescale U → 2U/ωc , V → ωcV /2 and finally get

ds2 = (dX+)2 + (dX−)2 + (dz)2 + 2dUdV − 2Φ̃dU2 , (45a)

Φ̃ =

(
1

2
−
(ωz

ωc

)2
)[

(X+)2 + (X−)2
]

+ 2(
ωz

ωc
)2z2

−
(ωz

ωc

)2 ε

2

[
cos 2U

(
(X+)2 − (X−)2

)
+ 2 sin 2U(X+X−)

]
,

(45b)



A complicated mixture of an anisotropic oscillator together with a
periodic correction term.

However, if we choose

∆ =

(
ωz

ωc

)2

− 1

2
= 0 , (46)

we are left with a CPP profile (26):

Φ̃s = − ε
4

[
cos 2U

(
(X+)2 − (X−)2

)
+ 2 sin 2U

(
X+X−

)]
+ z2 .

(47)

The Bargman lift of the modified Penning trap is a CPP GW in 5d .



In this special case, chiral decomposition of (43) yields

Y + = A cos

(
ωc

2

√
1 +

ε

2
t

)
+ B sin

(
ωc

2

√
1 +

ε

2
t

)

+ C cos

(
ωc

2

√
1− ε

2
t

)
+ D sin

(
ωc

2

√
1− ε

2
t

)
(48a)

Y− =

√
1 +

ε

2

[
B cos

(
ωc

2

√
1 +

ε

2
t

)
− A sin

(
ωc

2

√
1 +

ε

2
t

)]

+
1√

1− ε

2

[
D cos

(
ωc

2

√
1− ε

2
t

)
− C sin

(
ωc

2

√
1− ε

2
t

)]
.

(48b)

Therefore, one recovers the same motion in CPP GW (35).



Conclusions

• There exist similarities between quite distant systems like
GWs and ion traps.

• The motion of test particles in both systems boils down to
that of anisotropic, time dependent oscillators.

• The Bargmann lift of a Paul trap is a LPP GW.

• Analytical solutions for the motion in CPP GW is found.

• The Bargmann lift of the Penning trap does not correspond to
a CPP GW but its modified version does.

• Associated Sturm-Liouville problem is solved.

• Similar arguments apply for the stability of Lagrange points in
celestial mechanics.
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