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Plane Gravitational Waves

4d exact plane gravitational waves (GWs) in Brinkmann (B)
coordinates X" = {X* X~ U, V} 1

gl dX1dX" = 5;;dX dX) + 2dUdV + Ky(U)X'X/dU?,  (1a)
vi 1
KiXixi = §A+(U)((X+)2 — (X)) + AXTXT, (1b)
where /,j = &+ and U, V light cone coordinates.
® Kjj(U) is the profile of GW.
e A (U)and A, (U): polarization state amplitudes.

® (1) is linearly polarized if A, (or A.) is vanishing.

M. W. Brinkmann, 1925



Matrix K(U) is symmetric and traceless:
1/ A(U)  Ax(U)
(KU(U)) o < Ai(U) —A+(U) ) ) (2)

¢ Non-vanishing components of the Riemann tensor for (1) are

R'yjy = —R%y = —Kj. (3)

® Since tr(K) =0, (1) is Ricci flat, i.e., R, = 0.
It is a vacuum solution of Einstein’s equation.

Geodesic Lagrangian for a spinless, test particle is written as

+ KUX’XJ'(‘Z/UY]

Le = Eg’“' do do 2 do do do o

(4)

1 pdXtdXY 1 de")z ,dU dv

where o is an affine parameter.



Euler-Lagrange equations derived from (4)

d’X d?U d?v
Joz = KU)X, ——5 =0, —— (5)

They match
d?XH dXxe dx?
A — =0. 6
do? tlas do do (6)

e Transverse plane: X* = X*(U), anisotropic, U—dependent
attractive/repulsive oscillators.

® (J itself can be considered as the affine parameter.
e \/— equation can be solved once X*(U) is found:

1 dX
V(U)=—3X 5+ GU+ G, (7)

where C; and (5 are constants.



Periodic GWs

® Particular periodic profile:
AL (U) =AgcoswlU, Ax(U) = Bycos(wU — ¢)

If Ax = 0: linearly polarized periodic (LPP) GW,

If Ao = By and ¢ = 7/2: circularly polarized periodic (CPP)
GW,

K (8)

_ Ao (coswlU  sinwU
2 \sinwlU —coswU

Periodic GWs are sought in inflationary models?.

They also exhibit exhibit memory effectS.

2B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations] 2017
3P-M. Zhang, C. Duval and P. A. Horvathy, 2017



Symmetries

® General plane waves (2) admit a 5—parameter isometry
group.4,
e |dentified as the Carroll group with broken rotations 2,

9 9 ;0 ;9

{aX’.7E’ ﬁixm}a (9)

in Baldwin-Jeffery-Rosen (BJR) coordinates.

¢ However, for CPP case (8), the broken symmetries combine to
give a sixth symmetry,

w _
§=0u+ §(x+a, —X704), Legw =0, (10

called the screw symmetry.

“D. Kramer, H. Stephani, M. McCallum and E. Herlt 2003
5C. Duval, G. W. Gibbons, P. Horvathy and PM Zhang.- 2017



Motivation

llderton®: Screw symmetric CPP GW (8) is the classical double

copy of Bialynicki-Birula's electromagnetic vortex’.

® Clue: Both systems are screw symmetric.

® Tool: Classical double copy.
Question: Are there any other physical systems related to GWSs?
Answer : lon traps.

® The clue: Both motions boil down to anisotropic, time
dependent oscillators.

® The tool: Bargmann framework and the null geodesics therein.

Strictly speaking, “4d GW metric (1) is the Bargmann manifold of
a 2d NR harmonic oscillator.”

5A. llderton, 2018
7]. Bialynicki-Birula 2009




Planar Paul trap

Paul trap®:
® Charges and neutral particles can be trapped by electric or
magnetic quadrupole potentials,
® Even a single ion can be trapped for high accuracy
measurements,
® Functions as a mass spectrometer.

Linear Paul trap MOT container
8W. Paul, 1990




2d Paul trap quadrupole potential

00

O(X) = 2 (X - (X)), Ve=0. (1)

where X are plane coordinates and ® is a constant.

(11) allows harmonic motion in X but escaping motion along X~
axis. No stable motion, particle is lost.

To stabilize, a periodic voltage g coswt is added:

. . dX
Xi::F(a—2qcoswt) X*, X:E. (12)

t is NR time and w is the oscillation frequency.

r

T 5% constants.

a=-®gandg=e
®g, g at the order of few volts.

Experimentally interesting region: 0 < a, g < 1.



Rescale in order to put into standard Mathieu form, t — %

X* = (5 — 2§ cos2t) X*, (13)
with 4 = (4/w?)a, § = (4/w?)q.
(13) are called the Mathieu equations.

They have both bounded and unbounded solutions.

Stable motion depends on the parameters a and q. For instance

a=0, 0<g<gmax=0.92. (14)

Bounded solutions of (13) are given in terms of Mathieu functions
C(é\' 6]7 t) and S(é\/ év t)'



LPP GWs

Equations similar to (13) arise for particle motion in the spacetime
of a LPP GW

o 1
ds? = §;dX dX! +2dUdV+§A+(U)<(X+)2—(X‘)2)dU2, (15)

with
Ao [cos2U 0
A4 = Agcos2U, K2< 0 —cos2U>' (16)
Transverse geodesic equations read
A dX*
(XF)' = i70(c052U)Xi, (XF) = —0 (17)

which are (13) with a = 0.



Bound motions are described by C(Ag, U) and S(A, U).

X2

1.0

-1.0]

Figure: In a weak linearly polarized periodic (LPP) wave, (16), the
transverse coordinate X(U) oscillates in a bounded “bow tie”-shaped
domain. The initial conditions are X*(U=0) = X~ (U=0) = 0 (at rest
for U=0), at initial position X (U=0) =1, X~ (U=0) = 0.



Bargmann framework

Bargmann framework®:

® (d+1,1) dimensional relativistic framework endowed with a
covariantly constant Killing vector 0y, to discuss the
symmetries of d dimensional NR systems

e (lassical motions of the NR system will be the null geodesics.
We lift the 2d Paul trap (11) by putting —2®(X, t) to the UU

component of the metric, adding an extra coordinate V' and
promoting t — U

g" dXPdX” = dX? + 2dUdV — 20(X, U) dU?, (18a)
1
(X, U) = 5(a— 2q cos2V) ((><+)2 - (X*)2> , (18b)

Observe V2® =0 — R = 0.
Bargmann metric of Paul trap is Ricci flat and it is a LPP GW.

9C. Duval, G. Burdet, H. P. Kunzle and M. Perrin 1985



Dynamics in 4d Bargmann manifold can be described via

1 5 dX*dX¥
Lp==-gh — .
P28 4y do
Identification of the canonical momenta
dX’ dv du du
Pi=—, Py=—-20— Py,=—= o
do’ V" do do’ 7 do cons
leads to the Bargmann Hamiltonian as
P;P;
H= T PyPy + &(X, U)P%.
Recover NR motion by the null condition

1 nz L
H= Eg‘ PP, =0, g'gyu =4dl,

yields the 2d Paul trap Hamiltonian, Hygr

Hynr = 121—|-<D()(,U):—PU7 Py = 1.

(23)

U becomes NR time in (23) and equations (13) can be obtained.

Null condition (22) projects V(U) = Vo — [V Lyr(X, U')dU..



3 — d Paul trap
3—dimensional quadrupole potential for the Paul trap:

O(XE, 2, t) = = (a+ 2q cos 2t) ((X+)2 (X7 - 222), (24)

N —

where a, g are the parameters.
The motion is described by three uncoupled Mathieu equations,
X* + (a+2qgcos2t) Xt =0, (25a)
z — 2(a+2qgcos2t)z= 0. (25b)
For a suitable range of parameters (a2, g), bounded motions arise.
(24) can be lifted to 5d Bargmann space.

The quadratic form is traceless, V°® =0 = R,, =0:
Bargmann lift of the 3d Paul trap is a GW in 5d.



CPP GWs
We consider CPP GWs

ds? = g;idX'dX’/ +2dUdV + K;(U)X' X! dU?, (26)
with w =2
Ao [ cos2U sin2U
K= (K'j)_2< sin2U  —cos2U ) Ao = const > 0.
(27)
Geodesic equation for transverse plane (5):
A
(XY = ?"(X+ cos2U + X2sin2U), (28a)
A
(XY = ?O(x+ sin2U — X2 cos 2U) (28b)

Anisotropic and U dependent. Augmented with initial conditions,

restat U=0 ie, X'(0)=0. (29)



Solve for the geodesic equations.

First step: Rotating frame trick

Xt cosU  —sinU y+
<X>(sinU cosU)<Y>' (30)
It allows a U-independent potential together with the “magnetic”
term F(Y )

(Y F2(YFY — Q2 Y* =0 where Q2 =1+ A0/2, (31)

(29) becomes

Y’(O)_<_Ol (1)>Y0—<_01 é)xo, (32)



Second step: Chiral decomposition®?:
® a general method for solving Hill type equations (31),

® it also provides the decomposed Hamiltonian and the
symplectic 2—form.

Find smart phase space coordinates {Z1, Z7}

Yyt=2z1+2, vy =22+22,
2 2 2 — 2 71 1
nt=2z2+Q272, N =-Q3z} - 7,

where M+ = (Y*)'. They decompose ¢ and H as

A
a:a+—g,:-é’[dziAdzi—dziAdzE},

(33a)
(33b)

(34a)

H=H, —H_= % [(Qizizi +2272) — (222 + Q%ZEZE)]

Note the relative minus sign in (34).

(34b)

0p D. Alvarez, J. Gomis, K. Kamimura and M. S. Riyuschay 2607,-2008



Solutions are found as

Yt =AcosQ U+ BsinQ U+ CcosQ_U+ DsinQ_U,

(35a)
1
Y_:—4L(A§nQ+U——BaxQ+U)—ET{CﬁnQ,U——DGBQ,U)
(35b)

They match with Bialynicki - Birula’s EM vortex solutions.
® Ag < 2 both frequencies {2 are real, motions are bounded.
® Ay > 2, 2_ becomes imaginary and the motion is unbounded.

e Ay — 2, one of the motions is free.



z

(i) (i)
Figure: (i) In a sufficiently weak CPP GW (27) the transverse trajectory
of a particle initially at rest remains confined in a toroidal region.
(ii) For a strong wave the trajectory becomes unbounded. The initial
conditions are (X*)(0) = (X7)'(0) =0 and X" (0) =1, X (0) = 0.



3d Penning trap

Penning trap was developed by Dehmelt!?.

An anisotropic but time independent quadrupole potential and a
uniform B = BZ as stabilizer,

U= (P (R (Y R 22, VAW =0, (362)
1 1
Ap=—3BY", A =_BY' A =0. (36b)

The Lagrangian of a charged particle inside the Penning trap:

We

1. : : 1
L:§Y2+ 5 (Y—Y+—Y+Y—)+Zw§(v2—2£), (37)

where w. = B is the cyclotron frequency. () = d/dt, t is NR time.

1H. G. Dehmelt 1989



Equations of motion

: 1
YEFw YT - §w§ Y+ =0 (38a)
F+wiz=0 (38b)

(38) are similar to the CPP case (31) and can be solved
analytically.

Bounded, periodic solutions require w? > 0 and w? — 2w? > 0.
Typically in an experiment we >> w,.

For example: Vo = 10V, w, ~ 400MHz and w. ~ 103w,.



Figure: Trajectory of a charged particle in a Penning Trap

(i) in 3D

(ii) its projection on the Y* plane. .

Initial conditions are Y (0) = 1.0, Y*(0) =0.0, Y~ (0) =0, Y (0) =
1.0, z(0) =0, z(0) =0.2.



Bargmann lift of Penning trap

Form of (38a) is promising for a relation to CPP GWs.

We lift the non-relativistic motions in Penning trap to a 5d
Bargmann space with (Y, z, U, V)

ds® = dY? + dz* + 2dU(dV + AidY') — 2V dU?, (39)
whose null geodesics project consistently with (38).
To have a clear understanding, we eliminate the magnetic term

Y+ cos 4= U singU 0 Xt
Y= | = —sin%U cos%U 0 X~ |. (40)
z 0 0 1 z



We obtained the Bargmann metric of an axially symmetric
oscillator.

ds? = dX? + 2dUdV — 20 dU?, (41a)
1
©= (222 [(XTV+ (X ]+ 22, (ab)

(41) is not a CPP GW: it is not Ricci-flat V?® = w? = B

(38a) has the same frequency w, for both Y= which means
Ao = 0 in CPP case (26).



Modified Penning trap

A modified version of the Penning trap with the same A (36b),

~ Wz

Ve (R (AP A=y -222)  (42a)

1
Ap=Fpwe YT, A =A=0. (42b)

Perturbations ¢ << 1 breaks the axial symmetry!?.

The equations of a charged particle in the modified trap:

. . 2
Yi;wcw—%(m%)ﬁ:o, 5+w2z=0. (43)

Exactly in the same form as (31).

125ych imperfections are possible. See |.S. Brown and G. Gabrielse 1986.



Lifting to 5D Bargmann space (Y, Y,z U, V), we obtain
ds? = (dY )2+ (dY )2+ dz%+2dU(dV + AidY') —2UdU? (44)
To remove the magnetic term, we perform the 3d rotation (40).

We also rescale U — 2U/we, V — w:V//2 and finally get

ds? = (dX )2 + (dX7)? + (dz)? + 2dUdV — 2ddU? (45a)
2 ‘we

8= (- (97) [o0r7+ 7]+ 222

- (%)2 % [coszu ((XT)2 = (X7)?) +2sin20(X X)),
(45b)



A complicated mixture of an anisotropic oscillator together with a
periodic correction term.

However, if we choose

w,\? 1
A:<Z> - -=0, (46)
We 2

we are left with a CPP profile (26):

b, = 72 {cos2U<(X+)2 - (X—)2) + 2sin2U(X+X_)] + 22,
(47)

The Bargman lift of the modified Penning trap is a CPP GW in 5d.



In this special case, chiral decomposition of (43) yields

+_ . We €
Y Acos(2~/1—|—2)—I—Bsm<21/1—|—2>

+Ccos<u;C 1€t)+Dsm % 1;t> (48a)

Therefore, one recovers the same motion in CPP GW (35).



Conclusions
There exist similarities between quite distant systems like
GWs and ion traps.

The motion of test particles in both systems boils down to
that of anisotropic, time dependent oscillators.

The Bargmann lift of a Paul trap is a LPP GW.
Analytical solutions for the motion in CPP GW is found.

The Bargmann lift of the Penning trap does not correspond to
a CPP GW but its modified version does.

Associated Sturm-Liouville problem is solved.

Similar arguments apply for the stability of Lagrange points in
celestial mechanics.
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