Supranormal Matter

Symmetry Energy

n-Star Merger

Conclusions

Nuclear Equation of State: from Laboratory to Heavens

Pawel Danielewicz

Natl Superconducting Cyclotron Lab, USA

Institute for Particle and Nuclear Physics Wigner Research Centre for Physics Hungarian Academy of Sciences

May 28, 2019, Budapest

Equation of State of Nuclear Matter EOS: any nontrivial relation between thermodynamic vbles characterizing the matter, e.g. $p(\rho, T)$ or $\frac{E}{A}(\rho_p, \rho_n, T)$ Central Reactions & *n*-Stars: ρ changed due to compression Nuclear Structure: ρ changes in surface & dynamic oscillations Energy breakdown in uniform matter, due to charge symmetry:

$$\frac{E}{A}(\rho_n,\rho_p) = \frac{E_0}{A}(\rho) + S(\rho) \left(\frac{\rho_n - \rho_p}{\rho}\right)^2$$

Danielewicz

ro o	Incompressibility	Supranormal Matter	Symmetry Energy	<i>n</i> -Star Merger	Conclusions o	
	Pressure and Energy					
	In cold matter, a	t <i>T</i> = 0:	$P = \rho^2 \frac{d}{d_f}$	$\frac{1}{\rho}\frac{E}{A} \qquad \rho = \rho$	$n + \rho_p$	
	Further	$\frac{E}{A}$	$E(\rho_n,\rho_p)\approx \frac{E_0}{A}(p_n,\rho_p)$	$(\rho) + S(\rho) \left(\frac{\rho}{2}\right)$	$\left(\frac{\rho_n - \rho_p}{\rho}\right)^2$	
	In neutron matte	er $\rho_p \ll \rho_n$:	$\frac{E}{A}(\rho)\approx\frac{E_0}{A}(\rho)$	(ho) + S(ho)		
	With $S(\rho) = a_a^V +$	$\frac{L(\rho-\rho_0)}{3\rho_0}+\ldots,$	$P \simeq ho^2 rac{d}{d}$	$rac{S}{ ho}\simeqrac{L}{3 ho_0} ho^2$		
-16	200 150 Energy in symmetric 150 100 100 K=235MeV MeV 0.0 0.0 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	ic matter 0.6 0.8 1.0 -3) changing density in matter	While symm are strong in in nuclei $\frac{\rho n^{-}}{\rho}$ so $S(\rho) \left(\frac{\rho n^{-}}{\rho}\right)$ & symmetry are weak	hetry-energy in neutron matrix $\frac{\rho_p}{2} \lesssim 0.3,$ $\left(\frac{-\rho_p}{2}\right)^2 \ll \left \frac{E_0}{A}\right $ - energy effective	effects tter, ρ) tts NSCL	

Int 0

Central Reactions in Terms of Boltzmann Eq Central reactions of heavy nuclei described statistically in terms of Boltzmann equation for the Wigner function *f* - density of particles in space and momentum:

scattering cross-section.

System energy specified in terms of the Wigner functions, allowing to consider nonequilibrium situations, while constraining the equilibrium, $E = E\{f\}$. Single-ptcle energy:

イロト イポト イヨト イヨト

Monopole Oscillations

Pb Oscillations

 $E_{GMB}^* = \hbar \Omega$

data Youngblood, Garg et al

< 口 > < 同

 $K \sim 235 \,\mathrm{MeV}?$

Some Model Dependence

Relativistic RPA for different Lagrangians (Van Giai et al)

 \Rightarrow K = (230 - 285) MeV

Central Reactions

Reaction plane: plane in which the centers of initial nuclei lie Spectators: nucleons in the reaction periphery, little disturbed by the reaction

Participants: nucleons that dive into compressed excited matter

Nuclear EOS deduced from the features of collective flow in reactions of heavy nuclei

Collective flow: motion characterized by significant space-momentum correlations, deduced from momentum distributions of particles emitted in the reactions

Euler eq. in $\vec{v} = 0$ frame:

$$m_N
ho rac{\partial}{\partial t} \vec{v} = - \vec{\nabla} p$$

→ E > < E >

< < >> < </>

EOS and Flow Anisotropies

EOS assessed through reaction plane anisotropies characterizing particle collective motion

Hydro? Euler eq. in $\vec{v} = 0$ frame: $\left[\frac{m_N \rho \frac{\partial}{\partial t} \vec{v} = -\vec{\nabla} p \right]$ where p - pressure From features of v, knowing Δt , we may learn about p in relation to $\rho \Delta t$ fixed by spectator motion

For high *p*, expansion rapid and much affected by spectators For low *p*, expansion

sluggish and completes after spectators gone Simulation by L. Shi

イロト イ理ト イヨト イヨト

Danielewicz

Sideward Flow Systematics

Deflection of forwards and backwards moving particles away from the beam axis, within the reaction plane

Au + Au Flow Excitation Function

Note: K used as a label

PD, Lacey & Lynch

The sideward-flow observable results from dynamics that spans a ρ -range varying with the incident energy

Kaon yield sensitive to EOS because multiple interactions needed for production, testing density The data suggest a relatively soft EOS

n-Star Merger

Conclusions

Constraints from Flow on EOS

Au+Au flow anisotropies: $\rho \simeq (2 - 4.6)\rho_0$ No one EOS yields both flows right. Discrepancies: inaccuracy of theory Most extreme models for EOS can be eliminated

PD, Lacey & Lynch + Fuchs + Hong + others

Neutron Matter: Uncertainty in

symmetry energy

Nuclear Mass Formula & Charge Invariance

Symmetry-energy details in nuclear mass-formula intertwined with details of other terms: Coulomb, Wigner & pairing + even those asymmetry-independent, due to (N - Z)/A - A correlations along stability line (PD)!

Best would be to study the symmetry energy in isolation from the rest of mass-formula! Absurd?!

Charge invariance to rescue: lowest nuclear states characterized by different isospin values (T, T_z) , $T_z = (Z - N)/2$. Nuclear energy scalar in isospin space

sym energy
$$E_a = a_a(A) \frac{(N-Z)^2}{A} = 4 a_a(A) \frac{T_z^2}{A}$$

$$\rightarrow E_a = 4 a_a(A) \frac{T^2}{A} = 4 a_a(A) \frac{T(T+1)}{A}$$

ヘロト 人間 ト ヘヨト ヘヨト

Nuclear Mass Formula & Charge Invariance

Symmetry-energy details in nuclear mass-formula intertwined with details of other terms: Coulomb, Wigner & pairing + even those asymmetry-independent, due to (N - Z)/A - A correlations along stability line (PD)!

Best would be to study the symmetry energy in isolation from the rest of mass-formula! Absurd?!

Charge invariance to rescue: lowest nuclear states characterized by different isospin values (T, T_z) , $T_z = (Z - N)/2$. Nuclear energy scalar in isospin space:

sym energy
$$E_a = a_a(A) \frac{(N-Z)^2}{A} = 4 a_a(A) \frac{T_z^2}{A}$$

$$\rightarrow E_a = 4 a_a(A) \frac{T^2}{A} = 4 a_a(A) \frac{T(T+1)}{A}$$

ヘロト 人間 ト ヘヨト ヘヨト

Nuclear Mass Formula & Charge Invariance

Symmetry-energy details in nuclear mass-formula intertwined with details of other terms: Coulomb, Wigner & pairing + even those asymmetry-independent, due to (N - Z)/A - A correlations along stability line (PD)!

Best would be to study the symmetry energy in isolation from the rest of mass-formula! Absurd?!

Charge invariance to rescue: lowest nuclear states characterized by different isospin values (T, T_z) , $T_z = (Z - N)/2$. Nuclear energy scalar in isospin space:

sym energy $E_a = a_a(A) \frac{(N-Z)^2}{A} = 4 a_a(A) \frac{T_z^2}{A}$ $\rightarrow E_a = 4 a_a(A) \frac{T^2}{A} = 4 a_a(A) \frac{T(T+1)}{A}$

・ロット (雪) () () () ()

Symmetry Coefficient Nucleus-by-Nucleus Mass formula generalized to the lowest state of a given *T*: $E(A, T, T_z) = E_0(A) + 4a_a(A) \frac{T(T+1)}{A} + E_{mic} + E_{Coul}$ In the ground state *T* takes on the lowest possible value $T = |T_z| = |N - Z|/2$. Through '+1' most of the Wigner term absorbed.

?Lowest state of a given *T*: isobaric analogue state (IAS) of some neighboring nucleus ground-state.

Danielewicz

Dedicated Experimental Efforts

SAMURAI-TPC Collaboration (8 countries and 43 researchers): comparisons of near-threshold π^- and π^+ and also *n-p* spectra and flows at RIKEN, Japan. NSCL/MSU, Texas A&M U Western Michigan U, U of Notre Dame GSI, Daresbury Lab, INFN/LNS U of Budapest, SUBATECH, GANIL China IAE, Brazil, RIKEN, Rikkyo U Tohoku U, Kyoto U

AT-TPC Collaboration (US & France)

Nuclear EOS

Danielewicz

Supranormal Matter

Symmetry Energy

Neutron-Star Merger

Gravitational-wave signal informs on history of merger

Spero, Physics 3(10)29; Kiuchi et al. PRL104(10)141101

Symmetry Energy

n-Star Merger

Conclusions

Deformation Changes Quadrupole Moment

Gravity Waveforms for Different EOS

Deformation depends on star size and latter on equation of state (EOS)

Andreas Bauswein;

Kiuchi et al. PRL104(10)141101

Incompressibility Supranormal Matter Symmetry Energy *n*-Star Merger Conclusion Merger-Collision Subtraction: Symmetry Pressure

Tsang et al. arXiv:1901.07673

< 口 > < 同

→ E → < E</p>

Conclusions

- Excitations of giant collective resonances constrain incompressibility of symmetric matter to K = (230-285) MeV
- Collective flow + threshold meson production in central heavy-ion reactions constrain nuclear pressure at densities $\rho = (1.2-4.5)\rho_0$. Most extreme model EOS eliminated
- Convergence on symmetry energy at ρ ≤ ρ₀, from variety of data, isospin diffusion, isobaric analog states etc., and from microscopic calcs testing mostly 2-body ints
- Gravitational-wave data from neutron-star merger yield neutron-matter EOS consistent with inferences from nuclear collisions. Subtraction constrains symmetry-energy pressure at $\rho > \rho_0$.

Supported by US Department of Energy under Grant US DE-SC0019209

イロト 不得 とくほ とくほう

Conclusions

- Excitations of giant collective resonances constrain incompressibility of symmetric matter to K = (230-285) MeV
- Collective flow + threshold meson production in central heavy-ion reactions constrain nuclear pressure at densities $\rho = (1.2-4.5)\rho_0$. Most extreme model EOS eliminated
- Convergence on symmetry energy at $\rho \lesssim \rho_0$, from variety of data, isospin diffusion, isobaric analog states etc., and from microscopic calcs testing mostly 2-body ints
- Gravitational-wave data from neutron-star merger yield neutron-matter EOS consistent with inferences from nuclear collisions. Subtraction constrains symmetry-energy pressure at $\rho > \rho_0$.

Supported by US Department of Energy under Grant US DE-SC0019209

イロト 不得 とくほ とくほう

Conclusions

- Excitations of giant collective resonances constrain incompressibility of symmetric matter to K = (230-285) MeV
- Collective flow + threshold meson production in central heavy-ion reactions constrain nuclear pressure at densities $\rho = (1.2-4.5)\rho_0$. Most extreme model EOS eliminated
- Convergence on symmetry energy at ρ ≤ ρ₀, from variety of data, isospin diffusion, isobaric analog states etc., and from microscopic calcs testing mostly 2-body ints
- Gravitational-wave data from neutron-star merger yield neutron-matter EOS consistent with inferences from nuclear collisions. Subtraction constrains symmetry-energy pressure at *ρ* > *ρ*₀.

Supported by US Department of Energy under Grant US DE-SC0019209

・ロト ・ 同ト ・ ヨト ・ ヨト

Conclusions

- Excitations of giant collective resonances constrain incompressibility of symmetric matter to K = (230-285) MeV
- Collective flow + threshold meson production in central heavy-ion reactions constrain nuclear pressure at densities $\rho = (1.2-4.5)\rho_0$. Most extreme model EOS eliminated
- Convergence on symmetry energy at ρ ≤ ρ₀, from variety of data, isospin diffusion, isobaric analog states etc., and from microscopic calcs testing mostly 2-body ints
- Gravitational-wave data from neutron-star merger yield neutron-matter EOS consistent with inferences from nuclear collisions. Subtraction constrains symmetry-energy pressure at *ρ* > *ρ*₀.

Supported by US Department of Energy under Grant US DE-SC0019209

イロト イポト イヨト イヨト

Conclusions

- Excitations of giant collective resonances constrain incompressibility of symmetric matter to K = (230-285) MeV
- Collective flow + threshold meson production in central heavy-ion reactions constrain nuclear pressure at densities $\rho = (1.2-4.5)\rho_0$. Most extreme model EOS eliminated
- Convergence on symmetry energy at ρ ≤ ρ₀, from variety of data, isospin diffusion, isobaric analog states etc., and from microscopic calcs testing mostly 2-body ints
- Gravitational-wave data from neutron-star merger yield neutron-matter EOS consistent with inferences from nuclear collisions. Subtraction constrains symmetry-energy pressure at *ρ* > *ρ*₀.

Supported by US Department of Energy under Grant US DE-SC0019209

イロト イポト イヨト イヨト