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Equation of State of Nuclear Matter
EOS: any nontrivial relation between thermodynamic vbles
characterizing the matter, e.g. p(ρ,T ) or E

A (ρp, ρn,T )

Central Reactions & n-Stars: ρ changed due to compression
Nuclear Structure: ρ changes in surface & dynamic oscillations
Energy breakdown in uniform matter, due to charge symmetry:

E
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Pressure and Energy

In cold matter, at T = 0: P = ρ2 d
dρ
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Further
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Central Reactions in Terms of Boltzmann Eq
Central reactions of heavy nuclei described statistically in terms
of Boltzmann equation for the Wigner function f - density of
particles in space and momentum:

velocity force

∂f
∂t

+
∂εp
∂p

∂f
∂r
−
∂εp
∂r

∂f
∂p

=

∫
dp2

∫
dΩ′ v12

dσ
dΩ′

×
(
(1− f1)(1− f2)f ′1 f ′2 − (1− f ′1)(1− f ′2)f1 f2

)
gain loss

Here, εp - single-particle energy and dσ
dΩ - nucleon-nucleon

scattering cross-section.
System energy specified in terms of the Wigner functions,
allowing to consider nonequilibrium situations, while
constraining the equilibrium, E = E{f}. Single-ptcle energy:

ε(p) =
δE
δf (p)
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Incompressibility from Vibrations?

E∗ = ~Ω = ~

√
K

mN 〈r2〉A

Problem: surface, Coulomb,
isospin imbalance
⇒ all that in Boltzmann eq.

K = 9 ρ2
0

d2

dρ2
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E
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= R2 d2

dR2
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Monopole Oscillations

Pb Oscillations E∗GMR = ~Ω

data Youngblood, Garg et al

⇒ K ∼ 235 MeV?
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Some Model Dependence

Relativistic RPA for different Lagrangians (Van Giai et al)

data (Garg et al)

⇒ K = (230− 285) MeV

Nuclear EOS Danielewicz



Intro Incompressibility Supranormal Matter Symmetry Energy n-Star Merger Conclusions

Central Reactions
Reaction plane: plane in which the centers of initial nuclei lie
Spectators: nucleons in the reaction periphery, little disturbed
by the reaction
Participants: nucleons that dive into compressed excited matter
Nuclear EOS deduced from the features of collective flow in
reactions of heavy nuclei
Collective flow: motion characterized by significant
space-momentum correlations, deduced from momentum
distributions of particles emitted in the reactions
Euler eq. in ~v = 0 frame:

mN ρ
∂

∂t
~v = −~∇p
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EOS and Flow Anisotropies
EOS assessed through reaction plane anisotropies
characterizing particle collective motion

Hydro? Euler eq. in ~v = 0 frame: mN ρ
∂
∂t ~v = −~∇p

where p - pressure From features of v , knowing ∆t , we may
learn about p in relation to ρ ∆t fixed by spectator motion

For high p, expansion
rapid and much
affected by spectators

For low p, expansion
sluggish and
completes after
spectators gone
Simulation by L. Shi
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Medium-Energy Collisions of Heavy Nuclei
Thermalized matter at high baryon density! 2 GeV/u Au+Au

Top panels: pressure ⊥ to beam axis (up to 90 MeV/fm3) + flow
Bottom panels: density (up to 3ρ0) in reaction plane + flow
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Sideward Flow Systematics
Deflection of forwards and backwards moving particles away
from the beam axis, within the reaction plane

Au + Au Flow
Excitation Function

Note: K used as a label

PD, Lacey & Lynch

The sideward-flow
observable results from
dynamics that spans
a ρ-range varying with
the incident energy
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2nd-Order or Elliptic Flow
Another anisotropy, studied at midrapidity:
v2 = 〈cos 2φ〉, where φ is azimuthal angle
relative to reaction plane

Au+Au v2
Excitation Function
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Subthreshold Meson (K/π) Production
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Ratio of kaons per
participant nucleon
in Au+Au collisions to
kaons in C+C collisions
vs beam energy

filled diamonds: KaoS
data
open symbols: theory
Fuchs et al

Kaon yield sensitive to EOS because multiple interactions
needed for production, testing density
The data suggest a relatively soft EOS

Nuclear EOS Danielewicz



Intro Incompressibility Supranormal Matter Symmetry Energy n-Star Merger Conclusions

Constraints from Flow on EOS
Au+Au flow anisotropies:
ρ ' (2− 4.6)ρ0
No one EOS yields both
flows right. Discrepancies:
inaccuracy of theory
Most extreme models for
EOS can be eliminated
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PD, Lacey & Lynch
+ Fuchs + Hong + others

Neutron Matter:
Uncertainty in
symmetry energy
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Nuclear Mass Formula & Charge Invariance
Symmetry-energy details in nuclear mass-formula intertwined
with details of other terms: Coulomb, Wigner & pairing + even
those asymmetry-independent, due to (N − Z )/A - A
correlations along stability line (PD)!
Best would be to study the symmetry energy in isolation from
the rest of mass-formula! Absurd?!
Charge invariance to rescue: lowest nuclear states
characterized by different isospin values (T ,Tz),
Tz = (Z − N)/2. Nuclear energy scalar in isospin space:

sym energy Ea = aa(A)
(N − Z )2

A
= 4 aa(A)

T 2
z

A

→ Ea = 4 aa(A)
T 2

A
= 4 aa(A)

T (T + 1)

A
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Symmetry Coefficient Nucleus-by-Nucleus
Mass formula generalized to the lowest state of a given T :

E(A,T ,Tz) = E0(A) + 4aa(A)
T (T + 1)

A
+ Emic + ECoul

In the ground state T takes on the lowest possible value
T = |Tz | = |N − Z |/2. Through ’+1’ most of the Wigner term absorbed.

?Lowest state of a given T : isobaric analogue state (IAS) of
some neighboring nucleus ground-state.

T=0

T=1

Tz=-1 Tz=1Tz=0

Study of changes in the
symmetry term possible
nucleus by nucleus

E∗IAS = ∆E = aa
∆
[
T (T + 1)

]
A

+ ∆Emic

Nuclear EOS Danielewicz



Intro Incompressibility Supranormal Matter Symmetry Energy n-Star Merger Conclusions

From aa(A) to S(ρ)
Strong aa(A) dependence (PD & Lee NPA922(14)1):
lower A⇒ more surface⇒ lower ρ⇒ lower S

aa(A) from IAS give rise to constraints on S(ρ) in
Skyrme-Hartree-Fock calculations
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Subnormal S(ρ) from Different Data
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Comparison to Microscopic Calculations

APR: V18 + UVIXBHF: V18 + UVIXDBHF: Bonn A
BHF: V18 + micro 3NBHF: Bonn B + micro 3N

extrapolationIAS + rnp constraints

Microscopic results from Baldo et al
Nuclear EOS Danielewicz
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Pions as Probe of High-ρ Symmetry Energy
B-A Li PRL88(02)192701: S(ρ > ρ0)⇒ n/pρ>ρ0 ⇒ π−/π+
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Dedicated Experimental Efforts
SAMURAI-TPC Collaboration (8 countries and 43
researchers): comparisons of near-threshold π− and π+ and
also n-p spectra and flows at RIKEN, Japan.

NSCL/MSU, Texas A&M U
Western Michigan U, U of Notre Dame
GSI, Daresbury Lab, INFN/LNS
U of Budapest, SUBATECH, GANIL
China IAE, Brazil, RIKEN, Rikkyo U
Tohoku U, Kyoto U

AT-TPC Collaboration (US & France)
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Neutron-Star Merger

Gravitational-wave signal informs on history of merger

Spero, Physics 3(10)29; Kiuchi et al. PRL104(10)141101
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Deformation Changes Quadrupole Moment

-0.2
-0.15

-0.1
-0.05

 0
 0.05

 0.1
 0.15

 0.2
(a) A2.9-0.8

-0.2
-0.15

-0.1
-0.05

 0
 0.05

 0.1
 0.15

 0.2
(b) S2.8-1

-0.2
-0.15

-0.1
-0.05

 0
 0.05

 0.1
 0.15

 0.2

 -7  -6  -5  -4  -3  -2  -1   0   1   2
tret - t merge [ms]

(c) F2.6-0.8

W
av

ef
or

m

Gravity Waveforms for Di�erent EOS

Deformation depends on star
size and latter on equation of
state (EOS)

Andreas Bauswein;

Kiuchi et al. PRL104(10)141101
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Phase Shift Compared to Point Masses

Merger Time for Point Particles

Stiff EoS

Soft EoS

Andreas Bauswein
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Pressure from Merger & Nuclear Collisions

 

 

Neutron Matter

Merger: Abbott et al. PRL121(18)161101
Collisions: PD et al. Science 298(02)1592 & arXiv:1807.06571
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Merger-Collision Subtraction: Symmetry Pressure

 

50% con�dence
90%

50% - Sym Matter

Tsang et al. arXiv:1901.07673
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Conclusions

Excitations of giant collective resonances constrain
incompressibility of symmetric matter to K = (230-285) MeV
Collective flow + threshold meson production in central
heavy-ion reactions constrain nuclear pressure at densities
ρ = (1.2-4.5)ρ0. Most extreme model EOS eliminated
Convergence on symmetry energy at ρ . ρ0, from variety
of data, isospin diffusion, isobaric analog states etc., and
from microscopic calcs testing mostly 2-body ints
Gravitational-wave data from neutron-star merger yield
neutron-matter EOS consistent with inferences from
nuclear collisions. Subtraction constrains
symmetry-energy pressure at ρ > ρ0.

Supported by US Department of Energy under Grant US DE-SC0019209
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