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Equation of State of Nuclear Matter
EOS: any nontrivial relation between thermodynamic vbles
characterizing the matter, e.g. p(p, T) or &(pp, pn, T)
Central Reactions & n-Stars: p changed due to compression

Nuclear Structure: p changes in surface & dynamic oscillations
Energy breakdown in uniform matter, due to charge symmetry:
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Intro
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Pressure and Energy

E
In cold matter, at T = 0: P =2 d p=pn+pp
dp A
E Eo — pp\ 2
Furth - P
urther Almo0) ~ 2000+ 8() (22
E E,
In neutron matter pp < pp: Z(p) ~ I(p) + S(p)
i L(p— po) 2dS L 5
With s(p) = a7 P~poos~ —
(p) =aa + 30 p dp ~ 3po
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Intro
oeo

Pressure and Energy

In cold matter, at T = 0:

Further

In neutron matter pp < pn:

L(p -

po)
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3po

With S(p) = ay +
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While symmetry-energy effects
are strong in neutron matter,
in nuclei #*2 < 0.3,
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Central Reactions in Terms of Boltzmann Eq
Central reactions of heavy nuclei described statistically in terms
of Boltzmann equation for the Wigner function f - density of
particles in space and momentum:
velocity force
Of  Oep Of  0Oep Of , do
at'f‘apar—arap—/dpg/dﬂ V12dQ'
<((1=H)(A =) — (1= )1 = )i )
gain loss

Here, ¢p - single-particle energy and 3—5 - nucleon-nucleon
scattering cross-section.

System energy specified in terms of the Wigner functions,
allowing to consider nonequilibrium situations, while
constraining the equilibrium, E = E{f}. Single-ptcle energy:

0E
e(p) = W
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Incompressibility
000

Incompressibility from Vibrations?

*
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Incompressibility
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Monopole Oscillations
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Some Model Dependence

Relativistic RPA for different Lagrangians (Van Giai ef al)
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Central Reactions

Reaction plane: plane in which the centers of initial nuclei lie
Spectators: nucleons in the reaction periphery, little disturbed
by the reaction

Participants: nucleons that dive into compressed excited matter
Nuclear EOS deduced from the features of collective flow in
reactions of heavy nuclei

Collective flow: motion characterized by significant
space-momentum correlations, deduced from momentum
distributions of particles emitted in the reactions

Euler eq. in v = 0 frame:

=

0 .
mNPaV:_VP
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EOS and Flow Anisotropies

EOS assessed through reaction plane anisotropies
characterizing particle collective motion

Hydro? Euler eq. in v = 0 frame: mNp% V= —ﬁp
where p - pressure From features of v, knowing At, we may
learn about p in relation to p At fixed by spectator motion

For high p, expansion \ i P .
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Simulation by L. Shi
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Supranormal Matter
[e]e] lelele]e]

Medium-Energy Collisions of Heavy Nuclei

Thermalized matter at high baryon density! 2 GeV/u Au+Au
X (fm)
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Top panels: pressure L to beam axis (up to 90 MeV/fm®) + flow
Bottom panels: density (up to 3p) in reaction plane + flow
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Sideward Flow Systematics

Deflection of forwards and backwards moving particles away
from the beam axis, within the reaction plane
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2"-Order or Elliptic Flow

15 2 AGeV
Another anisotropy, studied at midrapidity: @ 1} a
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Subthreshold Meson (K/x) Production

]

‘Hsoft EOS, pot ChPT .
s e | Ratio of kaons per
o orns o /AMDPARME L participant nucleon
s o essenesl in Au+Au collisions to
kaons in C+C collisions
vs beam energy
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£y
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Kaon yield sensitive to EOS because multiple interactions
needed for production, testing density

The data suggest a relatively soft EOS
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Constraints from Flow on EOS
Au+Au flow anisotropies:

100 -
p~(2—48)p0 -
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Symmetry Energy
[ ele}

Nuclear Mass Formula & Charge Invariance

Symmetry-energy details in nuclear mass-formula intertwined
with details of other terms: Coulomb, Wigner & pairing + even
those asymmetry-independent, due to (N — Z)/A- A
correlations along stability line (PD)!
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Symmetry Energy
[ ele}

Nuclear Mass Formula & Charge Invariance

Symmetry-energy details in nuclear mass-formula intertwined
with details of other terms: Coulomb, Wigner & pairing + even
those asymmetry-independent, due to (N — Z)/A- A
correlations along stability line (PD)!

Best would be to study the symmetry energy in isolation from
the rest of mass-formula! Absurd?!
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Symmetry Energy
[ ele}

Nuclear Mass Formula & Charge Invariance

Symmetry-energy details in nuclear mass-formula intertwined
with details of other terms: Coulomb, Wigner & pairing + even
those asymmetry-independent, due to (N — Z)/A- A
correlations along stability line (PD)!

Best would be to study the symmetry energy in isolation from
the rest of mass-formula! Absurd?!

Charge invariance to rescue: lowest nuclear states
characterized by different isospin values (T, T),
T, = (Z — N)/2. Nuclear energy scalar in isospin space:

—7)2 2

sym energy Ea = as(A) (NAZ) =4 a,4(A) %
T2 (T +1
NSCL
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Symmetry Energy
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Symmetry Coefficient Nucleus-by-Nucleus
Mass formula generalized to the lowest state of a given T:

T(T+1
E(AT.T) = Eo(A) + 4aa(A) "D 4 By By
In the ground state T takes on the lowest possible value
T =|T;| = |N — Z|/2. Through '+1" most of the Wigner term absorbed.

?Lowest state of a given T: isobaric analogue state (IAS) of

some neighboring nucleus ground-state.
T,=1 T,70 T,=1
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Symmetry Energy
ooe

From as(A) to S(p)
Strong a(A) dependence (PD & Lee NPA922(14)1):
lower A = more surface = lower p = lower S
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Symmetry Energy
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Subnormal S(p) from Different Data
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Symmetry Energy
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Symmetry Energy
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Pions as Probe of High-p Symmetry Energy
B-A Li PRL88(02)192701: S(p > pg) = N/Bpsp, = ©~ /7t
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Dedicated Experimental Efforts
SAMURAI-TPC Collaboration (8 countries and 43
researchers): comparisons of near-threshold 7~ and = and
als,\?srgﬁ/?\;l)gatrg]l_ and fk)él(\l'\j ellJt RIKEN, Japan. /

, Texas P e
Western Michigan U, U of Notre Dame @
GSI, Daresbury Lab, INFN/LNS ]
U of Budapest, SUBATECH, GANIL
China IAE, Brazil, RIKEN, Rikkyo U
Tohoku U, Kyoto U

AT-TPC Collaboration (US & France)
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n-Star Merger
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Neutron-Star Merger

Gravitational-wave signal informs on history of merger

-7 -6 -8 4 -3 -2 -1 0 1 2
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Waveform
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n-Star Merger
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Phase Shift Compared to Point Masses
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—-1500 —-1250 —=1000 -750 -500 —-250 0
] . ‘ . : . ]
12f -
102- ) ]
Stiff EoS

A¢ between PN and PN-+tidal

[ Jj/
0 L L L 1 1 1 1 L 1 1 1 1 L L 1 1 1 L ]
-20 -15 -10 -5 0
tms) Soft EoS 7«

. o ©

Merger Time for Point Particles @é

Andreas Bauswein

Nuclear EOS Danielewicz



n-Star Merger
L 1)

Pressure from Merger & Nuclear CoII|S|ons
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Collisions: PD et al. Science 298(02)1592 & arXiv:1807.06571

Z|
9
@)
(=]

Nuclear EOS Danielewicz



n-Star Merger
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Merger-Collision Subtraction: Symmetry Pressure
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Conclusions
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Conclusions

@ Excitations of giant collective resonances constrain
incompressibility of symmetric matter to K = (230-285) MeV
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Conclusions

@ Excitations of giant collective resonances constrain
incompressibility of symmetric matter to K = (230-285) MeV

@ Collective flow + threshold meson production in central
heavy-ion reactions constrain nuclear pressure at densities
p = (1.2-4.5)po. Most extreme model EOS eliminated
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Conclusions

@ Excitations of giant collective resonances constrain
incompressibility of symmetric matter to K = (230-285) MeV

@ Collective flow + threshold meson production in central
heavy-ion reactions constrain nuclear pressure at densities
p = (1.2-4.5)po. Most extreme model EOS eliminated

@ Convergence on symmetry energy at p < pg, from variety
of data, isospin diffusion, isobaric analog states etc., and
from microscopic calcs testing mostly 2-body ints
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Conclusions

@ Excitations of giant collective resonances constrain
incompressibility of symmetric matter to K = (230-285) MeV

@ Collective flow + threshold meson production in central
heavy-ion reactions constrain nuclear pressure at densities
p = (1.2-4.5)po. Most extreme model EOS eliminated

@ Convergence on symmetry energy at p < pg, from variety
of data, isospin diffusion, isobaric analog states etc., and
from microscopic calcs testing mostly 2-body ints

@ Gravitational-wave data from neutron-star merger yield
neutron-matter EOS consistent with inferences from
nuclear collisions. Subtraction constrains
symmetry-energy pressure at p > po.
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Conclusions

@ Excitations of giant collective resonances constrain
incompressibility of symmetric matter to K = (230-285) MeV

@ Collective flow + threshold meson production in central
heavy-ion reactions constrain nuclear pressure at densities
p = (1.2-4.5)po. Most extreme model EOS eliminated

@ Convergence on symmetry energy at p < pg, from variety
of data, isospin diffusion, isobaric analog states etc., and
from microscopic calcs testing mostly 2-body ints

@ Gravitational-wave data from neutron-star merger yield
neutron-matter EOS consistent with inferences from
nuclear collisions. Subtraction constrains
symmetry-energy pressure at p > po.
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