codeplay’
The future direction of (vcLand ISOQ
heterogeneous programming

Michael Wong
Codeplay Software
VP of Research and Development

http:://wongmichael.com/about

michael@codeplay.com

GPU DAY 2019

VP of R&D of
Codeplay

Chair of SYCL Heterogeneous Programming
Language

C++ Directions Group

ISOCPP.org Director, VP
http://isocpp.org/wiki/fag/wg21#michael-
wong

Head of Delegation for C++ Standard for

Canada

Chair of Programming Languages for

Standards Council of Canada

Chair of WG21 SG19 Machine Learning

Chair of WG21 SG14 Games Dev/Low

Latency/Financial Trading/Embedded

Editor: C++ SG5 Transactional Memory

Technical Specification

Editor: C++ SG1 Concurrency Technical

Specification

MISRA C++ and AUTOSAR

wongmichael.com/about

We build GPU compilers for

semiconductor companies

* Now working to make Al/MI
heteroegneous acceleration safe for
autonomous vehicle

http://isocpp.org/wiki/faq/wg21

Numerous people internal and external to the original
C++/Khronos group, in industry and academia, have made
contributions, influenced ideas, written part of this
presentations, and offered feedbacks to form part of this talk.

Specifically, Paul Mckenney, Joe Hummel, Bjarne Stroustru,
Botond Ballo for some of the slides.

| even lifted this acknowledgement and disclaimer from some

Acknowle of them.
dgement
Disclaimer

But | claim all credit for errors, and stupid mistakes. These
are mine, all mine!

Legal Disclaimer

THIS WORK REPRESENTS THE VIEW OF THE OTHER COMPANY, PRODUCT, AND SERVICE
AUTHOR AND DOES NOT NECESSARILY NAMES MAY BE TRADEMARKS OR SERVICE
REPRESENT THE VIEW OF CODEPLAY. MARKS OF OTHERS.

Codeplay - Connecting Al to Silicon

Addressable Markets

Automotive (ISO 26262)

loT, Smartphones & Tablets

High Performance Compute (HPC)
Medical & Industrial

Products
C ComputeCpp’

C++ platform via the SYCL™ open standard, enabling
vision & machine learning e.g. TensorFlow™ ;

A ComputeAorta

The heart of Codeplay's compute technology
enabling OpenCL™, SPIR™, HSA™ and Vulkan™

Technologies: Vision Processing
Machine Learning

Artificial Intelligence

Big Data Compute

Company Customers
High-performance software solutions BROADCOM. RENESAS
for custom heterogeneous systems - -
Enabling the toughest processor q:' Imagination
systems with tools and middleware QUALCONW\ LN,
based on open standards Movidius %
Established 2002 in Scotland _— Partners
(mtel)AMDZl

~70 employees

3 Act Play

* Is|SO C++ going heterogeneous?
* Is SYCL gaining in the marketplace?

* |sthere adirection for C++ and SYCL?

Internationc
Organizatic
standardizc

® What gets me up every morning?

C++11,14,17“No more Raw Food”

Don’t use Don’t use raw numbers, do type-rich programming with UDL
Don’t declare Don’t declare, use auto whenever possible
Don’t use Don’t use raw NULL or (void *) 0, use nullptr
Don’t use Don’t use raw new and delete, use unique_ptr/shared_ptr
Don’t use heap-allocated arrays, use std::vector and std::string, or the new VLA, then dynarray<>
Don’t use Don’t use functors, use lambdas
Don’t use raw loops; use STL algorithms, ranged-based for loops, and lambdas

Rule of Three? Rule of Zero or Rule of Five.

Parallelism “Use the right abstraction”

Abstraction

Cores
HW threads
Vectors

Atomic, Fences, lockfree, futures,
counters, transactions

Parallel Loops

Heterogeneous offload, fpga

Distributed
Caches
Numa

TLS

Exception handling in concurrent
environment

How is it supported

C++11/14/17 threads, async
C++11/14/17 threads, async
Parallelism TS2

C++11/14/17 atomics, Concurrency TS1,
Transactional Memory TS1

Async, TBB:parallel_invoke, C++17 parallel
algorithms, for_each

OpenCL, SYCL, HSA, OpenMP/ACC, Kokkos,
Raja

HPX, MPI, UPC++

C++17 false sharing support
Executors, Execution Context, Affinity
EALS

EH reduction properties

Act 1

* |s SO C++ going
heterogeneous?

| Internationc
)] | Organizatic
Standardizc

Iron Triangle of Parallel Programming Language Nirvana

Portability

Performance

Productivity

Performance Portability Productivity

OpenCL Productivity
OpenMP
CUDA
SYCL

Allj1gelio

Performance

Iron Triangle of Parallel Programming Nirvana is about making engineering tradeoffs

Concurrency vs
Parallelism

What makes parallel or concurrent programming
harder than serial programming? What'’s the
difference? How much of this is simply a new

mindset one has to adopt?

wrryrmart B

DB

Parallel/concurrency before C++11 (C++98)

Asynchronus Agents

Concurrent collections

Mutable shared state

Heterogeneous (GPUs,
accelerators, FPGA,

embedded Al
processors)
summary tasks that run operations on groups avoid races and Dispatch/offload to
independently and of things, exploit synchronizing objects | other nodes (including
communicate via parallelism in data and | in shared memory distributed)
messages algorithm structures
examples GUI,background trees, quicksorts, locked data(99%), Pipelines, reactive
printing, disk/net compilation lock-free libraries programming,
access (wizards), atomics offload,, target,
(experts) dispatch
key metrics responsiveness throughput, many race free, lock free Independent forward

core scalability

progress,, load-shared

requirement

isolation, messages

low overhead

composability

Distributed,
heterogeneous

today's abstractions

POSIX threads, win32
threads, OpenCL,
vendor intrinsic

openmp, TBB, PPL,
OpenCL, vendor
intrinsic

locks, lock hierarchies,
vendor atomic
instructions, vendor
intrinsic

OpenCL, CUDA

Parallel/concurrency after C++11

Asynchronus Agents

Concurrent collections

Mutable shared state

Heterogeneous (GPUs,
accelerators, FPGA,
embedded Al processors)

summary tasks that run operations on groups of avoid races and Dispatch/offload to other
independently and things, exploit parallelism synchronizing objects in nodes (including
communicate via messages | in data and algorithm shared memory distributed)

structures

examples GUl,background printing, trees, quicksorts, locked data(99%), lock-free | Pipelines, reactive

disk/net access compilation libraries (wizards), atomics | programming, offload,,
(experts) target, dispatch
key metrics responsiveness throughput, many core race free, lock free Independent forward

scalability

progress,, load-shared

requirement

isolation, messages

low overhead

composability

Distributed,
heterogeneous

today's abstractions

C++11: thread,lambda
function, TLS

C++11: Async, packaged
tasks, promises, futures,
atomics

C++11: locks, memory
model, mutex, condition
variable, atomics, static
init/term

C++11: lambda

Parallel/concurrency after C++14

Asynchronus Agents

Concurrent collections

Mutable shared state

Heterogeneous

summary tasks that run operations on groups of avoid races and Dispatch/offload to other
independently and things, exploit parallelism synchronizing objects in nodes (including
communicate via messages | in data and algorithm shared memory distributed)

structures

examples GUl,background printing, trees, quicksorts, locked data(99%), lock-free | Pipelines, reactive

disk/net access compilation libraries (wizards), atomics | programming, offload,,
(experts) target, dispatch
key metrics responsiveness throughput, many core race free, lock free Independent forward

scalability

progress,, load-shared

requirement

isolation, messages

low overhead

composability

Distributed,
heterogeneous

today's abstractions

C++11: thread,lambda
function, TLS, async

C++14: generic lambda

C++11: Async, packaged
tasks, promises, futures,
atomics,

C++11: locks, memory
model, mutex, condition
variable, atomics, static
init/term,

C++ 14:
shared_lock/shared_timed
_mutex, OOTA,
atomic_signal_fence,

C++11: lambda

C++14: none

Parallel/concurrency after C++17

Asynchronus Agents

Concurrent collections

Mutable shared state

Heterogeneous (GPUs,
accelerators, FPGA,

embedded Al
processors)
summary tasks that run operations on groups avoid races and Dispatch/offload to
independently and of things, exploit synchronizing objects | other nodes (including
communicate via parallelism in data and | in shared memory distributed)
messages algorithm structures
today's C++11: thread,lambda C++11: Async, C++11: locks, memory [C++11: lambda

abstractions

function, TLS, async

C++14: generic lambda

packaged tasks,
promises, futures,
atomics,

C++ 17: ParallelSTL,
control false sharing

model, mutex,
condition variable,
atomics, static
init/term,

C++ 14:
shared_lock/shared_ti
med_mutex, OOTA,
atomic_signal_fence,
C++ 17: scoped _lock,
shared_mutex,
ordering of memory
models, progress
guarantees, TOE,
execution policies

C++14: none

C++17: progress
guarantees, TOE,
execution policies

ISO C++ Standard

) . ISO/IEC JTC 1 (IT) (F)DIS Approval
Our organization = »
SC 22 (Pgme Langs) CD & PDTS Approval

WG21 — C++ Committee
Library WG Wording & Consistency

et Lib Evolution WG Design & Target (IS/TS)

SG1 SG5 SG6 SG10
Concurrency Tx. Memory Numerics Reflection Feature Test
SG12 $G13 SGi4 SG15 - Domain Specific
U. Behavior HMI, 1/0 d .G,f\:,”fa'i’fxc% Tooling &
SG17 SG18 5G19 SG20 i :
EWG Incubator LEWG Incubator | Machine Learning' cducation

SG2 SG3 SG4 SG8
Modules Filesystem Networking Concepts

Internal Approval

Inactive

SG11
Databases

ISO C++ Timeline https://isocpp.org/std/status

1980 1981 1982 1983 1984 1985 1986 1987 1988
1989 1990 1991 1992 1993 1994 1995 1996 1997

1998 1999 2000 2001

2002 2003 2004 2005 2006 2007 2008 2009 2010
IS: trunk
TSes: feature
branches for
separate release T -peeuvenycams 00000

& then merge

2011 2012 2013 2014 2015 2016 2017 2018 2019
Aug Feb Oct Apr Sep - Jun Nov May Oct Mar Jun Nov - Jul Nov Mar Jun Nov Feb:Aug Nov -

where work on detailed

specification wording Lib Fundamentals 15 Lib Fundamentals 2
starts ("adopt initial

(“send to publication”) Paraielsm

shaded to indicate that

dates, and TS branches Tx Memory (notto merge)

are approximate and

wjecttochange | R

Modules

Pre-C++11 projects

ISO
number

ISO/IEC
TR
18015:20
06

ISO/IEC
TR
19768:20
07

ISO/IEC
TR
29124:20
10

ISO/IEC
TR
24733:20
11

Name

Technical Report on
C++ Performance

Technical Report on
C++ Library Extensions

Extensions to the C++
Library to support
mathematical special

functions

Extensions for the
programming language
C++ to support decimal
floating-point

arithmetic

Status

Published 2006 (I1SO store)
Draft: TR18015 (2006-02-15)

Published 2007-11-15 (I1SO store)
Draft: n1745 (2005-01-17)

TR 29124 split off, the rest
merged into C++11

Published 2010-09-03 (ISO Store)
Final draft: n3060 (2010-03-06).
Under consideration to merge
into C++17 by p0226 (2016-02-
10)

Published 2011-10-25 (ISO Store)
Draft: n2849 (2009-03-06)

May be superseded by a future
Decimal TS or merged into C++ by
n3871

What is it?

C++ Performance

report

Has 14 Boost
libraries, 13 of
which was added

to C++11.

Really, ORDINARY
math today with a

Boost and

Dinkumware
Implementation

Decimal Floating

Point
decimal32
decimal64

decimall28

C++177

No

N/A (mostly
already
included into
C++11)

YES

No. Ongoing
work in SG6

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43351
http://www.open-std.org/jtc1/sc22/wg21/docs/TR18015.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43289
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1745.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=50511
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3060.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0226r0.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=38843
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2849.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3871.html

ISO/IEC TS
19841:2015

ISO/IEC TS
19217:2015

Status after Feb Kona C++ Meeting

Transactional
Memory TS

C++
Extensions
for Concepts

Executors

Coroutines
TS

Reflection TS

STATUS

Published 2015-09-16, (1SO
Store). Final draft: n4514
(2015-05-08)

Published 2015-11-13. (I1SO
Store). Final draft: n4553
(2015-10-02) Current draft:
p0734r0 (2017-07-14)
Merged into C++20 (with
modifications).

Composable lock-free
programming that scales

Constrained templates

Abstraction for where/how
code runs in a concurrent
context

Resumable functions, based
on Microsoft’s await design

Static code reflection
mechanisms

C++207?

No. Already in GCC 6 release
and waiting for subsequent
usage experience.

Merged into C++20,
including abbreviated
function templates!

Not headed for C++ 20, now
retarget for C++23

Published! Merged into
C++20

PDTS ballot done. Approved
for publication

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=66343
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=64031
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4553.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0734r0.pdf
https://www.iso.org/standard/73008.html

Concepts: compromised design for
Abbreviated Function Template

void f(Concept auto Xx);
Concept auto f(Concept auto x);

Status after Feb Kona C++ Meeting

ISO . .
Name Status What is it? C++20?
number
Latches, atomic<shared_ptr<t>>
merged into C++20. Already in
ISO/IECTS C++ Extensions for Published 2016-01-19. (ISO Store) Final improvements to future, latches and Visual Studio release and Anthony
19571:2016 Concurrency draft: p0159r0 (2015-10-22) barriers, atomic smart pointers Williams Just Threads! and waiting
for subsequent usage experience.
Will be withdrawn
C++ Extensions for
ISO/IECTS Library Published 2017-03-30. (ISO Store) source code information capture and Published! Parts of it merged into
19568:2017 Fundamentals, Draft: n4617 (2016-11-28) various utilities C++17, rest moved to V3
Version 2
ISO/IEC DTS Published 2017-12-05. (ISO Store) . . .
21425:2017 Ranges TS Draft: n4685 (2017-07-31) Range-based algorithms and views Merged in C++20
ISO/IECTS Published 2018-04-24. (ISO Store) Draft
19216:2018 Networking TS n4734 (2017-04-04). Latest draft: Sockets library based on Boost.ASIO Published. Not headed to C++20.
) n4771 (2018-10-08)
ISO/IEC TS ST e TR 005615, (|0 Sl gl) CoIPEEIS SR i SV PR
21544:2018 Modules V1 Draft n4720 (2018-01-29) the textual header file inclusion Published as a TS
model
Modules V2 .Impro.vements to Modgl.es vi, Merged into C++20
including a better transition path
Contracts Pre and post conditions BT s it

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=65242
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html
https://www.iso.org/standard/70587.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4617.pdf
https://www.iso.org/standard/70587.html
https://www.iso.org/standard/70910.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4685.pdf
https://www.iso.org/standard/64030.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4734.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4771.pdf
https://www.iso.org/standard/71051.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4720.pdf

Status after Feb Kona C++ Meeting

ISO number

Name

Status

What is it?

C++20?

ISO/IEC DTS 19568:xxxx

ISO/IEC DTS 19571:xxxx

ISO/IEC TS 19570:2018

ISO/IEC DTS 19841 :xxxx

ISO/IEC DTS 19568:xxxx

ISO/IEC DTS 19568:xxxx

Numerics TS

Concurrency TS 2

Parallelism TS 2

Transactional Memory TS 2

Graphics TS

Library Fundamental V3

Early development. Draft
p0101 (2015-09-27)

Early development

Published 2018-11-15. (SO
Store). Draft: n4773 (2018-
10-08)

Early development

Early development. Draft
p0267r8 (2018-06-26)

Initial draft, early
development

Various numerical facilities

Exploring , lock-free, hazard

pointers, RCU, atomic
views, concurrent data
structures, fibers
Deprecate volatile, add
volatile_load/store, TLS?

task blocks, progress
guarantees, SIMD<T>, vec,
no_vec loop based
execution policy

Exploring on_commit,
in_transaction. Lambda-
based executor model.

2D drawing API using Cairo
interface, adding stateless
interfacec

Generic scope guard and
RAIl wrappers

Under active development

Under active development.
Possible new clause

Published. Most are
Headed into C++20

Under active development.

Restarted after being
shutdown.

Under development

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0101r0.html
https://www.iso.org/standard/70588.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4773.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0267r8.pdf

Status after Feb Kona C++ Meeting

ISO number Name Status What is it? C++20?
. ; Under active development.
Linear Algebra SG14 SIG WIP Blas, separated into 3 layers Aiming for C++23
Machine Learning SG19 WIP Improve C++ for ML,AI, Under active development.

Pattern Matching

Undefined Behaviour/Safety
Critical

Education

Audio

Unicode

Tooling Ecosystem

A match-like facility for C++
WIP

SG12 WIP

SG20 WIP

SG13 HMI WIP

SG16 WIP

SG15 WIP

DNN, Graph programming

optimization that cause UB.
Pointer provenance, signed
integer overflow Validate
external C++ Safety APls:
Misra, Autosar

Support educating C++,

especially new features

Audio drivers

Compile-time regular
expression, source code
info capture, charset
transcoding

Build systems;

Aiming for C++23

Under active development.
Aiming for C++23

Under active development.
Aiming for C++23

Under active development.
Aiming for C++23

Under active development.
Aiming for C++23

Under active development.
Aiming for C++23

Under active development.
Aiming for C++23 TR

C++ 20 Language Features

Most notably, the Concepts
Technical Specification has
been merged into C++20!
Template parameter lists for

generic lambdas. T
Designated initializers.
Lambda capture [=, *this]
A VA OPT macroto
make variadic macros easier
to use.

Default member initializers
tor bitfields

A tweak to C++17’s
constructor template
argument deduction rules
Fixing const-qualified
pointers to members

The most significant new feature
voted in was operator<=>,
Range-based for statements with
initializer.

Lambdas is unevaluated contexts.
Default constructible and assignable
stateless lambdas.

Simplifying implicit lambda capture.
Fixing small functionality gaps in
constraints.

Deprecating the notion of “plain old
data” (POD).

Access checking on specializations.

const mismatch with defaulted copy

constructor.

ADL and function templates that are

not visible.

Coreissue 1581: when are constexpr

member functions defined?

http://wg21.link/n4641
http://wg21.link/p0428
http://wg21.link/p0329
http://wg21.link/p0409
http://wg21.link/p0306
http://wg21.link/p0683
http://wg21.link/p0702
http://wg21.link/p0704
http://wg21.link/p0515
http://wg21.link/p0614
http://wg21.link/p0315
http://wg21.link/p0624
http://wg21.link/p0588
http://wg21.link/p0857
http://wg21.link/p0767
http://wg21.link/p0692
http://wg21.link/p0641
http://wg21.link/p0846
http://wg21.link/p0859

More C++20 Language Features

* Language support forempty ¢ Support for contract-based
objects programming in C++20

e Relaxing the structured . Cl t : "
bindings customization point ass Lypes In non-type

finding rules. template parameters.
e Structured bindings in e Allowing virtual function
accessible members. calls in constant

e Allow pack expansion in
lambda init-capture.

expressions.

e Symmetry for <=> * Prohibit aggregates with

e Likely and unlikely attributes user-declared

* Down with typename! constructors.

* Relaxing range-based for * Efficient sized deletion for

loop’s customization point
finding rules

variable-sized classes.

http://wg21.link/p0840
http://wg21.link/p0961
http://wg21.link/p0969
http://wg21.link/p0780
http://wg21.link/p0905
http://wg21.link/p0479
http://wg21.link/p0634
http://wg21.link/p0962
http://wg21.link/p0542
http://wg21.link/p0732
http://wg21.link/p1064
http://wg21.link/p1008
http://wg21.link/p0722

More C++ 20 Language Features

Consistency improvements for <=> and

other comparison operators.

Conditionally explicit constructors, a.k.a.
explicit(bool).

- Deprecate implicit capture of this via [=].
- Integrating feature-test macros into the
C++ working draft.

- A tweak to the rules about when certain
errors related to a class being abstract are
reported.

- A tweak to the treatment of padding bits
during atomic compare-and-exchange
operations.

- Tweaks to the
feature.

- Updating the reference to the Unicode
standard.

VA OPT preprocessor

Abbreviated function templates
(AFTs).

Improvements to return-type-
requirements.

Immediate functions.

std::is constant evaluated()

try / catch blocks in constexpr
functions.

Allowing dynamic cast and
polymorphic typeid in constant
expressions.

Changing the active member of a
union inside constexpr

char8 t: a type for UTF-8 characters
and strings.

Access control in contract conditions.
Revising the C++ memory model.
Weakening release sequences.
Nested inline namespaces

Sighed integers are two’s complement

http://wg21.link/p1141
http://wg21.link/p1084
http://wg21.link/p1073
http://wg21.link/p0595
http://wg21.link/p1002
http://wg21.link/p1327
http://wg21.link/p1330
http://wg21.link/p0482
http://wg21.link/p1289
http://wg21.link/p0668
http://wg21.link/p0982
http://wg21.link/p1094
http://wg21.link/p1236
http://wg21.link/p1120
http://wg21.link/p0892
http://wg21.link/p0806
http://wg21.link/p0941
http://wg21.link/p0929
http://wg21.link/p0528
http://wg21.link/p1042
http://wg21.link/p1025

More C++ 20 Language Features

* Modules!
* Merging the Coroutines

TS into C++20

e Allow initializing
aggregates from a
parenthesized list of
values

e<=> |= == an important fix to the
default comparisons design.

eExtending structured bindings to be
more like variable declarations.
eReference capture of structured
bindings.

e Contract postconditions and return type
deduction.

eArray size deduction in new-expressions.
This is also a Defect Report against
previous versions of C++.

eContra CWG DR1778 (a bugfix related to
noexcept and explicitly defaulted
functions).

eMake charl6 t/char32 t string literals
be UTF-16/32.

http://wg21.link/p1103
http://wg21.link/p0912
http://wg21.link/p0960
http://wg21.link/p1185
http://wg21.link/p1091
http://wg21.link/p1381
http://wg21.link/p1323
http://wg21.link/p1009
http://wg21.link/p1286
http://wg21.link/p1041

C++20 Library Features

. Support for detecting * Transformation trait remove cvref

endianness e Treating unnecessary decay
. * Using nodiscard in the standard

programmatically ibrar

e Repairing elementary * Make std::memory order a scoped

R R enumeration
%qcngtclgnverilons (also a * Synchronized buffered ostream
efect Report) « A utility to convert pointer-like
 Improvements to the objects to raw pointers

integration of C++17 class * Add constexpr modifiers to

functions in <algorithm> and
template argument <utility> headers.

deduction into the » constexpr for std::complex

standard library (alsoa ; fomcshared ot

Defect .REport) e De-pessimize legacy <numeric>
* Extending make shared to algorithms with std::move

support arrays » String prefix and suffix checking,

i.e. starts_with() and ends_with()

http://wg21.link/p0463
http://wg21.link/p0682
http://wg21.link/p0739
http://wg21.link/p0674
http://wg21.link/p0550
http://wg21.link/p0777
http://wg21.link/p0600
http://wg21.link/p0439
http://wg21.link/p0053
http://wg21.link/p0653
http://wg21.link/p0202
http://wg21.link/p0415
http://wg21.link/p0718
http://wg21.link/p0020
http://wg21.link/p0616
http://wg21.link/p0457

More C++20 library Features

calendar and timezone
library.

std::span

<version> header

Tweak on how unordered
containers are compared
String::reserve() should not
shrink

User specializations of
function templates in
namespace std
Manipulators for C++
synchronized buffer ostream

constexpr iterator
requirements

The most notable addition at this
meeting was standard library Concepts.
atomic ref
Bit-casting object representations
Standard library specification in a
Concepts and Contracts world

Checking for the existence of an element
In associative containers

Add shitt() to <algorithm>

Implicit conversion traits and utility
functions

Integral power-of-2 operations

* The identity metafunction _
* Improving the return value of erase()-like

algorithms _
constexpr comparison operators for

std::array
constexpr for swap and related functions

* fpos requirements _ N
* Eradicating unnecessarily explicit default

constructors
Removing some facilities that were
deprecated in C++17 or earlier

http://wg21.link/p0355
http://wg21.link/p0122
http://wg21.link/p0754
http://wg21.link/p0809
http://wg21.link/p0966
http://wg21.link/p0551
http://wg21.link/p0753
http://wg21.link/p0858
http://wg21.link/p0898
http://wg21.link/p0019
http://wg21.link/p0476
http://wg21.link/p0788
http://wg21.link/p0458
http://wg21.link/p0769
http://wg21.link/p0758
http://wg21.link/p0556
http://wg21.link/p0887
http://wg21.link/p0646
http://wg21.link/p1023
http://wg21.link/p0879
http://wg21.link/p0759
http://wg21.link/p0935
http://wg21.link/p0619

More C++20 Library Features

The most L\otable addition at this rrlmeeting was
merging the Ranges TS into C++20!

Fixing operator>>i5asic istream&, CharT*).
variant and optional should propagate
copy/move triviality.

visit<R>: explicit return type for visit.

<chrono> zero(), min(), and max() should be
noexcept.

constexpr in std::pointer traits.

Miscellaneous constexpr bits.

unwrap ref decay and unwrap reference

reference wrapper for incomplete types

A sane variant converting constructor

std::function move constructor should be
noexcept

std::assume aligned

Smart pointer creation with default
initialization

Improving completeness requirements for
type traits)

Remove CommonReference requirement from
StrictWeakOrdering (a.k.a fixing relations)

Utility functions to implement uses-allocator
construction

Should span be Regular?

Make stateful allocator propagation more

consistent for operator+(basic string))

Simplified partial function application

Heterogeneous lookup for unordered

containers

Adopt consistent container erasure from

Library Fundamentals v2

http://wg21.link/p0896
http://wg21.link/p0487
http://wg21.link/p0602
http://wg21.link/p0655
http://wg21.link/p0972
http://wg21.link/p1006
http://wg21.link/p1032
http://wg21.link/p0318
http://wg21.link/p0357
http://wg21.link/p0608
http://wg21.link/p0771
http://wg21.link/p1007
http://wg21.link/p1020
http://wg21.link/p1285
http://wg21.link/p1248
http://wg21.link/p0591
http://wg21.link/p1085
http://wg21.link/p1165
http://wg21.link/p0356
http://wg21.link/p0919
http://wg21.link/p1209

More C++20 Library Features

epolymorphic allocator<> as a
vocabulary type.

e\Well-behaved interpolation for
numbers and pointers., a.k.a.
std::midpoint

eSigned ssize() functions, unsigned
size() functions in span

¢| stream, you stream, we all stream for

e Usability enhancements for
std::span

istream_iterator.

eRanges design cleanup

eTarget vectorization policies (from the
Parallelism TS v2)

eMake create directory() intuitive.
ePrecalculated hash values in lookup
eTraits for [un]bounded arrays
eMaking std::underlying type
SFINAE-friendly.

http://wg21.link/p0339
http://wg21.link/p0811
http://wg21.link/p1227
http://wg21.link/p0738
http://wg21.link/p1252
http://wg21.link/p1001
http://wg21.link/p1024
http://wg21.link/p1164
http://wg21.link/p0920
http://wg21.link/p1357
http://wg21.link/p0340

Parallel/concurrency aiming for C++20

Asynchronus Agents

Concurrent
collections

Mutable shared state

Heterogeneous/Distrib
uted

today's
abstractions

C++11: thread,lambda
function, TLS, async

C++ 20: Jthreads
+interrupt _token,
coroutines

C++11: Async,
packaged tasks,
promises, futures,
atomics,

C++ 17: ParallelSTL,
control false sharing

C++ 20: Is_ready(),
make_ready future()
simd<T>, Vec
execution policy,
Algorithm un-
sequenced policy,
span

C++11: locks, memory model,
mutex, condition variable,
atomics, static init/term,

C++ 14:
shared_lock/shared_timed_mu
tex, OQOTA,
atomic_signal_fence,

C++ 17: scoped _lock,
shared_mutex, ordering of
memory models, progress
guarantees, TOE, execution
policies

C++20: atomic_ref, Latches and
barriers, atomic<shared_ptr>
Atomics & padding bits
Simplified atomic init

Atomic C/C++ compatibility
Semaphores and waiting

Fixed gaps in memory model ,
Improved atomic flags, Repair
memory model

C++17:, progress
guarantees, TOE,
execution policies

C++20: atomic_ref,

Act 2 @CL,,.

* |s SYCL winningin the

marketplace? ,
v kokkos

OpenMP

PPL

A tale of two cities | e

(_)enMP CILK |

ARTS

“Z Tatel

Threading
Building Blocks

OpenACC.

DIRECTIVES FOR ACCELERATORS

NOS

KHRCS

OH, East is East, and West is West,
and never the twain shall meet...
-Rudyard Kipling

Kokkos

OpenCL

OpenMP HPX

SYCL , . Raja

CUDA The Quiet Revolution soost.compute

Core™i7

Heterogeneous Devices

Accelerator

-,
*

° bl ™

A

Hardware resources view

Stencil processor M-1

£ XILINX

Hot Chips

Arm'’s ML processor: Summa

16 Compute Engines

~ 4 TOP/s of convolution throughput (at
1 GHz)

Targeting > 3 TOP/W in 7nm and
~2.5mm?

8-bit quantized integer support
1MB of SRAM

‘roid NNAPI and

Kilinx Al Engines and Their Applications 018

el TooRaM
o —

Pure distributed machine with compiled communica

« Static partitioning of work and memory
cal latencies (

= Threads hide metic, memory, branch)

« Deterministic communication over a stateless "exchange’

P

P | | T @)

5
]

5
]

(]

-

andwidth

ry

DMA
Engine

Machine Learning Processor

Broadcast
Network

1

Control
u

SRAM

I Input Activation Read

M Weight Decoder

I MAC Engine

M Programmable Layer Engine

24 Compute Machines

Cluster (16 PE's)

Compute Machine (8 - 64 clusters and 128 - 102

The landscape of C++ Heterogeneous
computing

Boost.Compute

OpenMP 5

C++AMP (Microsoft)

TBB (Intel) - parallel threading abstraction for CPU (+OpenCL kernels).

KOKKOS (Sandia) —parallel execution and data abstraction for CPU and GPU
architectures (OpenMP, Pthreads, CUDA, ...).

RAJA (Livermore) —parallel execution for CPU and GPU architectures (OpenMP,
TBB, CUDA, ...). CHAI adds GPU data abstraction.

Parallel STL (ISO standard) —parallel execution abstraction for CPU architectures;
ggsl_i)gned for future extensions for GPU, etc. (e.g. AMD Bolt, Nvidia Thrust, MS

SYCL (Khronosstandard) -parallel execution and data abstraction that extends
the OpenCL model (supports CPU, GPU, FPGA, ...)

HPX (LSU) — Distributed computing model using modern C++
CUDA (Nvidia) — proprietary

HCC/ROcM/Hip — AMD

Agency (Nvidia research) — testing task dispatch and executors

What is SYCL for?

* Modern C++ lets us separate the what from the
how :

* We want to separate what the user wants to do: science,
computer vision, Al ...

* And enable the how to be: run fast on an OpenCL device

* Modern C++ supports and encourages this
separation

What we want to achieve

* We want to enable a C++ ecosystem for OpenCL:

Must run on OpenCL devices: GPUs, CPUs, FPGAs, DSPs
etc

C++ template libraries
Tools: compilers, debuggers, IDEs, optimizers
Training, example programs

Long-term support for current and future OpenCL
features

Why a new standard?

HOW STANDARDS PROLIFERATE!
(462 A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

SITUATION:
THERE ARE
|4 COMPETING
STANDPRDS,

147! RDIcULoUS)

WE NEED Te DEVELOP
ONE UNIVERSAL STANDARD
THAT COVERS EVERYONE'S
USE CASES. YERH!

KO)

)

SITUATION:
THERE. ARE
|5 COMPETING
STANDPRDS.

http://imgs.xkcd.com/comics/standards.png

* There are already very
established ways to map C++ to
parallel processors

* So we follow the established
approaches

* There are specifics to do with
OpenCL we need to map to C++

 We have worked hard to be an
enabler for other C++ parallel
standards

e We add no more than we need to

http://imgs.xkcd.com/comics/standards.png

KHRCSNOS

Where does SYCL fit in?

G R O U P

KHRCSNOS

OpenCL / SYCL Stack

C++ template libraries

SYCL for OpenCL

OpenCL Devices

TR

User application code

C++ template libraries C++ template libraries

| 9

Other technologies

Philosophy

e With SYCL, we wanted to align with the direction the
C++ standard is going

* And we also need to future-proof for future OpenCL device
capabilities

* Key decisions:
* We will not add any language extensions to C++

* We will work with existing C++ compilers
* We will provide the full OpenCL feature-set in C++

* Everything must compile and run on the host as well as an
OpenCL device

SYCL Ecosystem

« Ecosystem

SYCL ParallelSTL
SYCLBLAS

TensorFlow
ParallelSTL with Ranges

OpenSource ecosystem
at Codeplay

CUDA to SYCL

Documentation

- Prototype syclreference

« https://mmha.github.io/s
yclreference/libraries/

* U of Bristol Benchmarks

e Parallel Research Kernels

* Adapting to workloads in
HPC, Machine Learning,
Vision processing

https://mmha.github.io/syclreference/libraries/

With Apologies to Charles Dickens,
| have NOT a bleak story to tell

SYCL is vibrant and Growing

Tighter ISO C++ alighment in parallel - injecting our heterogeneous knowledge into
ISO and adapting C++ features

 Membership at all time high

- Intel, Xilinx, Codeplay, AMD, ARM, Imagination, Huawei, ETRI, NTHU
» Actively pursuing new specifications

- SYCL 1.2.1 released in November 2017

- Based on much user feedback from Tensorflow and ~7K downloads of free
Codeplay’s ComputeCPP

- SOW approved, now stands alone outside of OpenCL
- Starting work on SYCL next (tentatively SYCL 2019)
- Feedback from non-member community through sycl.tech
« Distributed and Heterogeneous Programming in C and C++ Workshop
(DHPCC++) going strong in its 3rd year
- 60 people, 6 great talks + 2 great keynotes +panel

Ghost of SYCL Past

GyeL

SYCL 1.2
C++11 Single source
programming

a a
OpenCL OpenCL
2011 2015 R
OpenCL 1.2 OpenCL 2.1
OpenCL C Kernel SPIR-V in Core
Language

GPR.

Our Observations then

C++ and Heterogeneous are coming together
Landscape moves really fast

. SYCL moves was slow, but now even faster then
C++

No major APl changes since 2015.

No major C++-related features since then (e.g, no
futures)

SYCL is extremely well received on C++ community

Success at CppCon talks, lots of downloads and
user feedback

Interest from research partners and other standard
committee

- But Many didn’t know OpenCL

Ghost of SYCL Present

:’a
| PROGRAMMING LANGU

Work with industry to bring
Heterogeneous compute to

NVIDIA. standard ISO C++
CUDA
NEE
GycL. GycL. s
OpenCL
SYCL 1.2 SYCL 1.2.1 . ,
C++11 Single source C++11 Single source OpenCL ‘Next
programming programming Flexible and efficient deployment
of parallel computation across
RULE S S diverse processor architectures
s /5 s /5 s /5
OpenCL OpenCL OpenCL
2011 2015 2017
OpenCL 1.2 OpenCL 2.1 OpenCL 2.2
OpenCL C Kernel SPIR-V in Core C++ Kernel Language
Language

GPR.

GPR.

Specification Current Status

® SYCL1.2.1/CTS Open Source e ++ Participation + 3 individual
® SYCL2013 « |IWOCL 2019 + 4th DHPCC++

O Removed 2.2 provisional
O Reviewed many MRs and Issues « Part of Khronos Machine Learning

© Simpler, more accessible - Tighter alignment with ISO C++
WIP Impl tati
* mpIEmentations * Plan to have SYCL bofs at SC, ISC,
classes at CPPCON, SC, ISC

O Regular calls on clang
collaboration

SYCL source code w

(effort announced by Intel on 2019/01/11)

-
-
>

Gl
-

-~ -
-~
-~
>

ComputeCpp hipSYCL

’O.Q(experimental!)
-

OpenCL 1.2

PTX devices - Any CPU - pretty much anything
- NVIDIA GPUs ., 2
| PIR(-V (with OpenMP)
OpenCL + SPIR-V Spench i SEIHGC) 3
- Intel CPUsS/GPUs OpenCL + SPIR-df

- Intel CPUs/GPUs < ARG EBs (with OpenMP) - pocl (CPUs, NVIDIA - AMD GPUs - NVIDIA GPUs
- o:,herISPI’l;t—V (depending on - GPUs)
evices driver stack) - Xilinx FPGAs

- ARM Mali

- Renesas R-Car

- | rommmmmmae- P — P ~
PesemeeEEeE e I_-_-_T Typos and small fixes |1 queue not blocking on P R : d
L | destruction L copy/move semantics
. —— —! L mesenon __ CESEEEEE) b
/ [i i | \\.
i - I \

————————————— e e e e \
| Improved polnter\ \
I classes F\
Specification
ro......—— Changes/Clarifications
SYCL 1.21
Implicit vector | ————————— e

I
I
I
=

Multi-subscript Syntax
for Image Accessors

conversions

Replaced by

Replaced by

m—dm e ———
'async_work_g’oq:)_copy:
1 1 functions. prefetch and |
: 1 mem_fence 1
I

-

interoperability

improvements

What is in an x.x.1? More than you think.

1.2.

SYCL 1.2.1 for Machine Learning

Vec load and store operations

It's now possible to perform vector load and store operations
using the member functions "vec::load” and "vec::store’

Add variadic function for setting kernel

arguments for OpenCL interoperability

It is now possible to pass all kernel arguments in a single call
using the member function "handler::set_args’

e Placeholder accessors
« Itis now possible to construct an accessor outside of a
command group, registering it at a later time, using the
placeholder specialisation
e Reinterpretable buffers
« It is now possible to construct a new buffer from another buffer
with a different type, as long as the size of the buffer remains
the same
o Explicit copy operations
. Itis possible to direct the SYCL runtime to copy data in or out of
the accelerator by triggering explicit copy operations.

SYCL.

Example 1: Reinterpretable Buffers

constexp]r' '5122e_t sizelnBytes = 1024;

auto byteRng = range<1>{sizelnBytes};

auto floatRng = range<1>{sizelnBytes / sizeof(float)};
constexpr size_t sizelnFloats = sizelnBytes / sizeof(float);

/* Construct initial buffer of bytes type */
buffer<byte, 1> byteBuf{data, byteRng};

queue.submit([&](handler &cgh) {
auto acc = buf.get_access<access::mode::write>(cgh);
cgh.parallel_for<kernel>(floatRng, [=](id<1> idx) {
func(static_cast<float>(acc[idx * sizeof(float)]));
bk
s

constexpr'SIZZ'el_t sizelnBytes = 1024;

auto byteRng = range<1>{sizelnBytes};

auto floatRng = range<1>{sizelnBytes / sizeof(float)};
constexpr size_t sizelnFloats = sizelnBytes / sizeof(float);

/* Construct initial buffer of bytes type */
buffer<byte, 1> byteBuf{data, byteRng};

/* Construct a reinterpreted buffer of float type */
auto floatBuf = byteBuf.reinterpret<float>(floatRng);

queue.submit([&](handler &cgh) {
auto acc = buf.get_access<access::mode::write>(cgh);
cgh.parallel_for<kernel>(floatRng, [=](id<1> idx) {
func(acc[idx]);
3
;s

SYCL.

Example 2: Explicit Copy Operations

SYCL 1.2

constexpr size_t size = 1024;

buffer<int, 1> buf{range<1>(size)};

std::vector<int> input = some_other_task();
buffer<int, 1> tmpBuf{input.data(), range<1>(size)};

queue.submit([&](handler& cghh) {

auto srcAcc=
buf.get_access<access::mode::read>(cgh);

auto destAcc =
buf.get_access<access::mode::write>(cgh);

/* Enqueue a no-op kernel to perform a copy */
cgh.parallel_for<cpy>(range<1>(size)[=](id<1> idx){
destAcc[idx] = src[idx];
3);
hE

C%XscgeLxg'r' %'z%_t size = 1024;
buffer<int, 1> buf{range<1>(size)};

std::vector<int> input = some_other_task();
queue.submit([&](handler& cghh) {

auto destAcc =
buf.get_access<access::mode::write>(cgh);
/* Enqueue a copy operation */

cgh.copy<cpy>(input.data(), destAcc);

3;

SYCL.

Example 3: Placeholder Accessors

SYCL 1.2 . SYCL1.2.1
constexpr size_t sizelnBytes = 1024; constexpr size_t sizelnBytes = 1024;
bUffer<int, 1> bUf(data, range<1>(Size)); buffer<int’ 1> buf(data, range<1>(size));

auto acc = accessor<int, 1, access::mode::write,
access::target::global_buffer,
access::placeholder::true_t>(buf);

myQueue.submit([&](handler &cgh) { myQueue.submit([&](handler &cgh) {
auto acc = accessor<int, 1, access::mode::write, cgh.require(acc);

access::target::global_buffer(buf, cgh);

cgh.parallel_for<kernel>(cgh.parallel_for<kernel>(
range<1>(dataSize), [=](id<1> idx) { range<1>(dataSize), [=](id<1> idx) {
func(acc[idx]); func(acc[idx]);
;s ;s

3); 1;

User feedback from SYCL 1.2.1 release

. SYCL Parallel STL is very well
received by C++ community

. Majority of people still don’t
understand the limitations of GPU

. Some prefer migrating CUDA to

SYCL than OpenCL

. Single-source, templates and
asynchronous features main drivers

Act 3

Is there a SYCL and C++
future Direction?

GycL.

o
O:
Z

V]

KHRCS

‘a ﬂ
mmﬂmc m&OGRAMMING

C++11 C++14

GyeL

SYCL 1.2
C++11 Single source
programming

Ca

C++17

GyeL

SYCL 1.2.1
C++11 Single source
programming

Ghost of SYCL Future (May Change)

\a
| PROGRAMMING.

C++20
GyeL. GroL.

C++17 Single source C++20 Single source
programming programming

,,“E 2 ,,“E 2 ,,“E 2 ,,“E 2 ,,“E 2

OpenCL OpenCL OpenCL OpenCL OpenCL

2011 2015 2017 201 0
OpenCL 1.2 OpenCL 2.1 OpenCL 2.2 '

OpenCL C Kernel SPIR-V in Core

Language @Rm

C++ Kernel Language

GPR.

Work on SYCL 2019 is already starting

. Introduce a new naming scheme based
on year of release

. Aiming for regular bus-train model of
delivery every ~1.5 years

. Build on SYCL 1.2.1 and add user
requested features

. Add Safety Critical Support

. Tighter ISO C++ alignment in parallel -
injecting our heterogeneous knowledge
into ISO and adapting C++ features

What about SYCL 2.27

. Removed!

SYCL: Heterogeneous C++

SYCL 2019

C

Intersection with ISO C++

* Rendered feedback * Executors
opinion on Modules e Affinity
keyword and Vulkan * Futures

* SG12’s Cairo 2D Graphics <« Execution Context
interface may be should ¢ Concurrent Exception
use Khronos OpenVG for handling

2D * Pipes

* Or Khronos OpenGL/ * Execution Agent Local
Vulkan for 3D Storage

* Interact with SG14 Linear * C++ Parallelism TS2
Algebra * SIMD

* SG19 Machine Learning

Features only in SYCL

Single-source standard C++

Both kernel and host language are in the same source file

All code is standard C++ without non-conformant extensions

Host execution + Fallback

Command groups can be executed on the host if no device available
Helps debugging

Possibility of re-enqueue on the host if not possible on device
Dataflow execution (accessors + requirements)

Dependencies are used to define order of execution of command
groups/kernels/operations

Implicit memory operations
Hierarchical parallelism

Simpler and optimal interface to write algorithms in hierarchical
memory architecture

Other Parallel Patterns?
Pipelines/Stages? Task farms? PSTL-Algorithms?

Features from OpenCL

(. N

Platform Model
e Platform/Context/Device/Queue
e Execution Model
e Queue
e Kernel execution
e Synchronization points
e Memory model
e Buffer/image
e Global/local/private

-

Memory Model

e Scoped atomics?
Pipes?

SVM?

e Coarse/fine/system?
Device-Enqueue?

SYCL
2019

candidates

Increase visibility of SYCL group/spec

Periodic reporting of SYCL

orogress to OpenCL group Public drafts of the spec

Workshops/Tutorials/Events

More frequent regular

: Books and other material
releases (like C++)

Call to Join the Ghost of SYCL Future

- Please join SYCL working group OR

 Join Advisory Board to advise us
— michael@codeplay.com
— opencl_sycl@khronos.org

« Visit sycl.tech for information

« What would you like to see in future SYCL

— What in OpenCL 2.2 you need in SYCL?

— What features you really need in SYCL?
* Tighter ISO C++ alignment in parallel - injecting our heterogeneous knowledge

into ISO and adapting C++ features

Fb e o -~T"“‘"
I'M THE GHOST ORICHR 1@‘\‘$‘PRESENT

mailto:michael@codeplay.com

ISO C++ Timeline https://isocpp.org/std/status

1980 1981 1982 1983 1984 1985 1986 1987 1988
1989 1990 1991 1992 1993 1994 1995 1996 1997

1998 1999 2000 2001

2002 2003 2004 2005 2006 2007 2008 2009 2010
IS: trunk
TSes: feature
branches for
separate release T -peeuvenycams 00000

& then merge

2011 2012 2013 2014 2015 2016 2017 2018 2019
Aug Feb Oct Apr Sep - Jun Nov May Oct Mar Jun Nov - Jul Nov Mar Jun Nov Feb:Aug Nov -

where work on detailed

specification wording Lib Fundamentals 15 Lib Fundamentals 2
starts ("adopt initial

(“send to publication”) Paraielsm

shaded to indicate that

dates, and TS branches Tx Memory (notto merge)

are approximate and

wjecttochange | R

Modules

C++
Directions

Group:
PO939

Directions for ISO C++ DWG P0939r0

Doc. no.: p0939r0

Date: 2018-02-10

Programming Language C++

Audience: All WG21

Reply to: Bjarne Stroustrup (bs@ms.com)

Direction for ISO C++

B. Dawes, H. Hinnant, B. Stroustrup, D. Vandevoorde, M. Wong

Revision History

e This is the initial version.

Main sections

e History

e Long-term Aims (decades)

s Medium-term Aims (3-10 years)
® Priorities for C++20

® Process Issues

e The C++ Programmer’s Bill of Rights

| * Change gradually building on previous

Nadve a work
big idea | - or

fO d D Ig * Provide better alternative to existing
feature
change

Many cooks (photos
by Bjarne Stroustrup)

| have a

secret to
tell you

Direction Group
Operating
Created as Principles for
C++ by Head¢
response to Call to ¢ e 2o
Action of

C++ in danger of losing
coherency due to
proposals with differ and
contradictory design
philosophies

The Direction Group
direction@lists.isocpp.org

We try to represent USERS: the Interest
of the larger C++ community

WG 21 Direction
Group

What is C++

C++ is a language for defining C++ supports building resource
and using lightweight constrained applications and
abstractions software infrastructure

C++ support large-scale
software development

How do
we want

C++ to
develop?

Improve support for large -scale
dependable software

Improve support for high-level
concurrency models

Simplify language use

Address major sources of
dissatisfaction

Address major sources of error

* A direct map to hardware (initially
from C)

e Zero-overhead abstraction in
production code (initially from Simula,
where it wasn’t zero-overhead)

Strengthen

two pillars

Better support for modern hardware
(e.g., concurrency, GPUs, FPGAs,
NUMA architectures, distributed
systems, new memory systems)

More expressive, simpler, and safer

abstraction mechanisms (without
added overhead)

4.3

Concrete
Suggestions

&3

e Pattern matching

* Exception and error returns
 Static reflection

* Modern networking

* Modern hardware:

* We need better support for modern
hardware, such as executors/execution
context, affinity support in C++ leading to
heterogeneous/distributed computing
support, SIMD/task blocks, more concurrency
data structures, improved atomics/memory
model/lock-free data structures support. The
challenge is to turn this (incomplete) laundry
list into a coherent set of facilities and to
introduce them in a manner that leaves each
new standard with a coherent subset of our
ideal.

* Simple graphics and interaction

e Anything from the Priorities for C++20
that didn’t make C++20

Modern hardware

We need better
support for modern
hardware, such as
executors/execution
context, affinity
support in C++ leading
to

computing
support, ...

ISO C++ Standard

) . ISO/IEC JTC 1 (IT) (F)DIS Approval
Our organization = »
SC 22 (Pgme Langs) CD & PDTS Approval

WG21 — C++ Committee
Library WG Wording & Consistency

et Lib Evolution WG Design & Target (IS/TS)

SG1 SG5 SG6 SG10
Concurrency Tx. Memory Numerics Reflection Feature Test
SG12 $G13 SGi4 SG15 - Domain Specific
U. Behavior HMI, 1/0 d .G,f\:,”fa'i’fxc% Tooling &
SG17 SG18 5G19 SG20 i :
EWG Incubator LEWG Incubator | Machine Learning' cducation

SG2 SG3 SG4 SG8
Modules Filesystem Networking Concepts

Internal Approval

Inactive

SG11
Databases

https://github.com/cplusplus/papers/issues

B Splashtop 4 Splashtop i e To boldly su -bs-mzc | [GPU Day

(0N Reliz ML SRl ps://github.com/cplusplus/papers/issue Wooeee o +y IND e =

o Why GitHub? Enterprise Explore Marketplace Pricing Sign in Signup‘

cplusplus / papers @Watch 28 drSar 38 YFork 1
Code (@ lssues 41 Pull requests 0 Projects 4 Wiki Security Insights
isissue is;open © Labels 34 ',‘ Milestones 3
(@ 411 0pen + 139 Closed Author ~ Labels ~ Projects Milestones Assignee ~ Sort ~

@ P1700 Target-audience tables 5620 info

2 opened 11 hours ago by wg2lbet " 2

(@ P0939 Direction for ISO C++ infe

0 opened 12 days ago by wg21bot 201

@ P0592 To boldly suggest an overall plan for C++23 iinfo

pened 12 days ago by wg2lbot <~ 2019
@ P1674 Evolving a Standard C++ Linear Algebra Library from the BLAS SGM4 - 31
8 opened 12 days ago by wg21bot
(@ P1673 A free function linear algebra interface based on the BLAS $GM4 - 31

pened 12 days ago by wg21bot 2019

@

P1669 Callsite Based Inlining Hints: [[always_inline]] and [[never_inline]] L

6 opened 12 days ago by wg21bot 2019-07

@

P1668 Enabling constexpr Intrinsics By Permitting Unevaluated inline-assembly in
constexpr Functions

pened 12 days ago by wg21bot " 20

@ P1780 Modular Relaxed Dependencies: A new approach to the Out-Of-Thin-Air Problem
5G1

4 opened 12 days ago by wg21bot

@

P1726 Pointer lifetime-end zap

3 opened 12 days ago by wg21bot

P1703 Recognizing Header Unit Imports Requires Full Preprocessing 5G2 modules

2 opened 12 days ago by wg21bot " 2019

@

A e e P . I
sg6 A | v | Highlight Al Match Case Whole Words 1o 1 match Reached end of page, continued from top x

Take away

* C++ is pushing towards Heterogeneous device
programming

* Adding Study Groups for Machine Learning,
Graphics, Education, Linear Algebra, Low Latency

e C++is good for Al and ML and still works for Legacy
code

e C++20 will be MAJOR MAJOR release

What will be in C++ 20
| |Dependson | current target (estimated, could slip) |

Concepts C++20 (adopted, including convenience syntax)
Contracts C++20 (adopted)

Ranges C++20 (adopted)

Coroutines C++20

Modules C++20

Reflection TS in C++20 timeframe, IS in C++23

Executors IW timeframe, Full in C++23

Executors, and

possibly Coroutines Crize

Networking

future.then, async2 Executors

Abstraction

Cores
HW threads
Vectors

Atomic, Fences, lockfree, futures, counters, transactions

Parallel Loops

Heterogeneous offload, fpga

Distributed

Caches

Numa

TLS

Exception handling in concurrent environment

Use the Proper Abstraction with C++

How is it supported

C++11/14/17 threads, async

C++11/14/17 threads, async

Parallelism TS2->C++20

C++11/14/17 atomics, Concurrency TS1->C++20,

Transactional Memory TS1

Async, TBB:parallel_invoke, C++17 parallel algorithms,
for_each

OpenCL, SYCL, HSA, OpenMP/ACC, Kokkos, Raja
P0796 on affinity

HPX, MPI, UPC++
P0796 on affinity

C++17 false sharing support

Executors, Execution Context, Affinity, P0443->Executor TS

EALS, P0772

EH reduction properties
P0797

invoke async parallel algorithms future::the post

n
defer define_task_block dispatch asynchronous operations strand<>

Unified interface for execution

Boost.Asio /
Networking TS

SYCL / OpenCL /
CUDA / HCC

OpenMP / MPI C++ Thread Pool

Current Progress of Executors

* An instruction stream is the — s | —
function you want to execute Plaorn Resource Context

* An executor is an interface that
descrlbgs wher_e and when to
run an instruction stream

Instruction Lightweight
Stream Execution

* An executor has one or more Agent
execute functlons

* An execute function executes

an instruction stream on light S
weiﬁht execution agents such
as threads, SIMD units or GPU
threads

Executor

Current Progress of Executors

* An execution platform is a
target architecture such as
linux x86

 An execution resource is

Lightweight

the hardware abstraction ——

Agent

that is executing the work
such as a thread pool

 An execution context
manages the light weight
execution agents of an
execution resource during
the execution

Socket 0

Socket 1

Core 0 Corel Core 0

Corel

auto exec = execution::execution context{execRes}.executor () ;

auto affExec = execution::require (exec, execution: :bulk,

execution: :bulk execution affinity.compact);

affExec.bulk execute([] (std::size t i, shared s) {
func (i) ;
}, 8, sharedFactory) ;

Parallel/Concurrency beyond C++20: C++23

Asynchronus Agents

Concurrent collections

Mutable shared state

Heterogeneous/Dlstribute
d

today's abstractions

C++11: thread,lambda
function, TLS, async

C++14: generic lambda

C++ 20: Jthreads
+interrupt _token

C++23: networking,
asynchronous algorithm,
reactive programming,
EALS, async2, executors

C++11: Async, packaged
tasks, promises, futures,
atomics,

C++ 17: ParallelSTL,
control false sharing

C++ 20: Is_ready(),
make_ready_future(),
simd<T>, Vec execution
policy, Algorithm un-
sequenced policy
Executors Lite, span

C++23: new futures,
concurrent vector,task
blocks, unordered
associative containers,
two-way executors with
lazy sender-receiver
models, concurrent
exception handling,
executors, mdspan

C++11: ...
C++ 14: ...
C++17: ...

C++20: atomic_ref,
Latches and barriers
atomic<shared_ptr>
Atomics & padding bits
Simplified atomic init
Atomic C/C++
compatibility
Semaphores and waiting
Fixed gaps in memory
model , Improved atomic
flags , Repair memory
model

C++23: hazard_pointers,
rcu/snapshot, concurrent
queues, counters, upgrade
lock, TM lite, more lock-
free data structures,
asymmetric fences

C++17: , progress
guarantees, TOE,
execution policies

C++20: atomic_ref,
mdspan, executors Lite

C++23: affinity, pipelines,
EALS,
freestanding/embedded
support well specified,
mapreduce, ML/AI,
reactive programming
executors, mdspan

C++23

* Library support for coroutines
* Executors

* Networking

A modular standard library

After C++20

*Much more libraries
* Audio
* Linear Algebra
* Graph data structures
* Tree Data structures
* Task Graphs
* Differentiation

e Reflection
* |IPR paper
* https://github.com/GabrielDosReis/ipr

After C++23

 Reflection
* Pattern matching

* C++ ecosystem

Ignite your applications
with XL Compilers

fo &F

F.dison
Jesign
Z Group

Visual C++

SYCL source code

(effort announced by Intel on 2019/01/11)

(non-standard macros required)

PETELLLL] rreaa,,
Leett “~,

ComputeCpp triSYCL hipSYCL

o
.0

’~..(experimemau)
.

PTX devices

- NVIDIA GPU:
OpenCL + SPIR(-V) X

&
"‘experimental!)
.

".‘ Any CPU

“,4 (with OpenMP)
OpenCL + SPIR-df

OpenCL 1.2

- pretty much anything
3

Any CPU Any CPU

OpenCL + SPIR-V

- Intel CPUS/GPUS Any CPU

- Intel CPUS/GPUs

™M - AMD GPUs (with OpentP) -poct (CPUS,NVIDIA . AMD GPUS - NVIDIA GPUS
° mdt::(SPl'F’l-V (depending on N s)
vices driver stack) - Xilinx FPGAs
- ARM Mali

- Renesas R-Car

SYCL source code

(effort announced by Intel on 2019/01/11)

et
. v

C ComputeCpp’

(non-standard macros required)

1y
---I""
..-'..-.I.........
oy
"y

yy
.
LTI I

hipSYCL

'0..(experimental!)

*
PTX devices

- NVIDIA GPU
OpenCL + SPIR(-V))

’.‘experimental!)
*

%, Any CPU
*

%4 (with OpenMP)
OpenCL + SPIR-df

OpenCL 1.2

- pretty much anything
)

OpenCL + SPIR-V
- Intel CPUs/GPUs

% P .
Intel CPUs/GPUs — (with OpenMP) - pocl (CF;Us, NVIDIA -AMD GPUs - NVIDIA GPUs
- o:’her-SPl‘I;-V (depending on - GPUs)
evices driver stack) - Xilinx FPGAs
- ARM Mali

- Renesas R-Car

IWOCL DHPCC++ 2019 feedback

reduction

extension

common address space

A unified common address space.

Common parallel algorithms such as reduce and sort as built-in
commands in the SYCL API.

A mechanism for supporting extensions and a flexible profile.

Support for more than 3 dimensions in buffers, accessors and
kernel invocations.

A SYCL standard library; consisting of math functions, utilities and
BLAS routines.

A mechanism for pre-baking graphs in SYCL that can be executed
multiple times, similar to CUDA graphs.

A solution for the problem of having to name lambdas used as SYCL
kernel functions.

Support for more advanced access patterns for accessors, such as
strided access and views adapters.

A generalization of the different levels of iteration space sub-
division. Re-introducing the multi_ptr subscript operator.

nnnnnnnnnnn

oneAAPI” SYCL in 2019

: IS being investigated for

HPC

. Keynote at DOE Performance
Portability Shootout

. Xilinx FPGA and Codeplay PTX

backend demonstrations at last
SC17!

. Plan SC19 BoF

. Classes at CPPCON 2019, ISC 2020
SC2020

. Intel One APl and DPC++
. Planned SYCL conference in 2020
. NEED more HPC features!

SYCL and C++
Convergence and Continued Research

”kokkos

C: [Q@CL

Use the Proper Abstraction with C++

Cores C++11/14/17 threads, async

HW threads C++11/14/17 threads, async

Vectors Parallelism TS2->C++20

Atomic, Fences, lockfree, futures, counters, transactions C++11/14/17 atomics, Concurrency TS1->C++20,

Transactional Memory TS1

Parallel Loops Async, TBB:parallel_invoke, C++17 parallel algorithms,
for_each
Heterogeneous offload, fpga OpenCL, SYCL, HSA, OpenMP/ACC, Kokkos, Raja
P0796 on affinity
Distributed HPX, MPI, UPC++
P0796 on affinity
Caches C++17 false sharing support
Numa Executors, Execution Context, Affinity, PO443->Executor TS
TLS EALS, P0772
Exception handling in concurrent environment EH reduction properties

P0797

If you have to remember 3 things

1 2 3

Expose more Increase Use
parallelism Locality of Heterogeneous
reference C++ today

SYCL Ecosystem

e Comp uteCdp
https://codeplay.com/products/computesuite/computecpp
tr|SYCL https://github.com/triSYCL/triSYCL

SYCL - http://sycl.tech

SYCL ParaIIeISTL https://github.com/KhronosGroup/SyclParallelSTL
VisionCpp - https://github.com/codeplaysoftware/visioncpp
SYCL-BLAS - https://github.com/codeplaysoftware/sycl-blas
TensorFlow- SYCL https://github.com/codeplaysoftware/tensorflow
Eigen http://eigen.tuxfamily.org

https://codeplay.com/products/computesuite/computecpp
https://github.com/triSYCL/triSYCL
http://sycl.tech/
https://github.com/KhronosGroup/SyclParallelSTL
https://github.com/codeplaysoftware/visioncpp
https://github.com/codeplaysoftware/sycl-blas
https://github.com/codeplaysoftware/tensorflow
http://eigen.tuxfamily.org/

Eigen Linear Algebra Library

SYCL backend in mainline

Focused on Tensor support, providing
support for machine learning/CNNs

Equivalent coverage to CUDA

Working on optimization for various
hardware architectures (CPU, desktop and
mobile GPUs)

https://bitbucket.org/eigen/eigen/

https://bitbucket.org/eigen/eigen/

TensorFlow

SYCL backend support for all major CNN
operations
Complete coverage for major image
recognition networks
GoogleNet, Inception-v2, Inception-v3, \

ResNet, ‘
Ongoing work to reach 100% operator
coverage and optimization for various
hardware architectures (CPU, desktop and

mobile GPUs) Tensor

https://github.com/tensorflow/tensorflow

TensorFlow, the TensorFlow logo and any related marks are
trademarks of Google Inc.

https://github.com/tensorflow/tensorflow

SYCL Ecosystem

« Single-source heterogeneous programming using STANDARD C++
- Use C++ templates and lambda functions for host & device code

- Layered over OpenCL

- Fast and powerful path for bring C++ apps and libraries to OpenCL
- C++ Kernel Fusion - better performance on complex software than hand-coding
- Halide, Eigen, Boost.Compute, SYCLBLAS, SYCL Eigen, SYCL TensorFlow, SYCL GTX
- triSYCL, ComputeCpp, VisionCpp, ComputeCpp SDK ...

e More information at http://sycl.tech

Developer Choice
The development of the two specifications are aligned so
code can be easily shared between the two approaches

C++ Kernel Language
Low Level Control
‘GPGPU’-style separation of
device-side kernel source
code and host code

Va GreL.

Single-source C++
Programmer Familiarity

Approach also taken by
C++ AMP and OpenMP

G

a

OpenCL

C++ template libraries

User application code

-

C++ template libraries

W@

C++ template libraries

Other technologies

L

OpenCL Devices

|

CPU

l GPU DSP

CPU

{ } T
=
Custom Processor

FPGA

http://sycl.tech/

Codeplay

* HSA Foundation: Chair of software
group, spec editor of runtime and
debugging

o Khronos: chair & spec editor of SYCL.
Contributors to OpenCL, Safety Critical,
Vulkan

SO C++: Chair of Low Latency,
Embedded WG; Editor of SG1
Concurrency TS

¢ EEMBC: members

VectorC for x86

First showing of
VectorC{VU}

Delivered VectorC{VU}
to the National Center
for Supercomputing

VectorC{EE} released

2001 - 2003

* Members of EU research consortiums:

PEPPHER, LPGPU, LPGPU2, CARP

* Sponsorship of PhDs and EngDs for
heterogeneous programming: HSA,
FPGASs, ray-tracing

* Collaborations with academics

¢ Members of HIPEAC

Open source

* HSA LLDB Debugger

 SPIR-V tools

* RenderScript debugger in AOSP

* LLDB for Qualcomm Hexagon

* TensorFlow for OpenCL

o C++ 17 Parallel STL for SYCL

* VisionCpp: C++ performance-portable

Ageia chooses Codeplay
for PhysX

Codeplay joins the
Khronos Group

programming model for vision

Sieve C++ Programming
System released

Offload released for
Sony PlayStation®3

OffloadCL technology
developed

Codeplay joins the
PEPPHER project

Presentations

* Building an LLVM back-end
* Creating an SPMD Vectorizer for OpenCL

with LLVM

* Challenges of Mixed-Width Vector Code
Gen & Scheduling in LLVM
* C++ on Accelerators: Supporting Single-

Source SYCL and HSA

* LLDB Tutorial: Adding debugger support

for your target

LLDB Machine Interface
Driver released

Codeplay joins the CARP
project

Codeplay shows
hnology to

editor of the SYCL
standard

accelerate Renderscript
on OpenCL using SPIR

Chair of HSA System
Runtime working group

Development of tools
supporting the Vulkan
API

Company

* Based in Edinburgh, Scotland

* 57 staff, mostly engineering

e License and customize technologies for
semiconductor companies

¢ ComputeAorta and ComputeCpp:
implementations of OpenCL, Vulkan and
SYcL

* 15+ years of experience in
heterogeneous systems tools

Open-Source HSA
Debugger release

Releases partial
OpenCL support (via
SYCL) for Eigen Tensors
to power TensorFlow

ComputeAorta 1.0
release

ComputeCpp Community
Edition beta release

Codeplay build the software platforms that deliver massive performance

What our ComputeCpp users say

Benoit Steiner — Google TensorFlow
engineer

Hartmut Kaiser -HPX

WIGNER Research Centre

TensorFlow

“We at Google have been working closely
with Luke and his Codeplay colleagues on
this project for almost 12 months now.
Codeplay's contribution to this effort has
been tremendous, so we felt that we
should let them take the lead when it
comes down to communicating updates
related to OpenCL. ... we are planning to
merge the work that has been done so
far... we want to put together a
comprehensive test infrastructure”

OMNERA
-_______._--—'—______'—-—-_.______-

THE FREMIZH AZ ZE LaB

“We work with royalty-free SYCL because
it is hardware vendor agnostic, single-
source C++ programming model without
platform specific keywords. This will allow
us to easily work with any heterogeneous
processor solutions using OpenCL to
develop our complex algorithms and
ensure future compatibility”

for Physics

“My team and | are working with
Codeplay's ComputeCpp for almost a year
now and they have resolved every issue
in a timely manner, while demonstrating
that this technology can work with the
most complex C++ template code. | am
happy to say that the combination of
Codeplay's SYCL implementation with our
HPX runtime system has turned out to be
a very capable basis for Building a
Heterogeneous Computing Model for the
C++ Standard using high-level
abstractions.”

It was a great pleasure this week for us,
that Codeplay released the ComputeCpp
project for the wider audience. We've
been waiting for this moment and
keeping our colleagues and students in
constant rally and excitement. We'd like
to build on this opportunity to increase
the awareness of this technology by
providing sample codes and talks to
potential users. We're going to give a
lecture series on modern scientific
programming providing field specific
examples.”

Further information

* OpenCL

* OpenVX

* HSA

* SYCL

* OpenCV
* Halide

* VisionCpp

https://www.khronos.org/opencl/

https://www.khronos.org/openvx/

http://www.hsafoundation.com/
http://sycl.tech

http://opencv.org/
http://halide-lang.org/

https://github.com/codeplaysoftware/visioncpp

https://www.khronos.org/opencl/
https://www.khronos.org/openvx/
http://www.hsafoundation.com/
http://sycl.tech/
http://opencv.org/
http://halide-lang.org/
https://github.com/codeplaysoftware/visioncpp

SYCL.
C ComputeCpp

Community Edition
Available now for free!

Visit:
computecpp.codeplay.com

SYCL.
C Co%ute(:pp“

* Open source SYCL projects:
* ComputeCpp SDK - Collection of sample code and integration tools
e SYCL ParallelSTL — SYCL based implementation of the parallel algorithms
* VisionCpp — Compile-time embedded DSL for image processing
* Eigen C++ Template Library — Compile-time library for machine learning

All of this and more at: http://sycl.tech

http://sycl.tech/

codeplay’

Questions ?

@codeplaysoft /codeplaysoft codeplay.com

