

Supercomputing on demand with GPU

Gabor Varga National Technology Officer

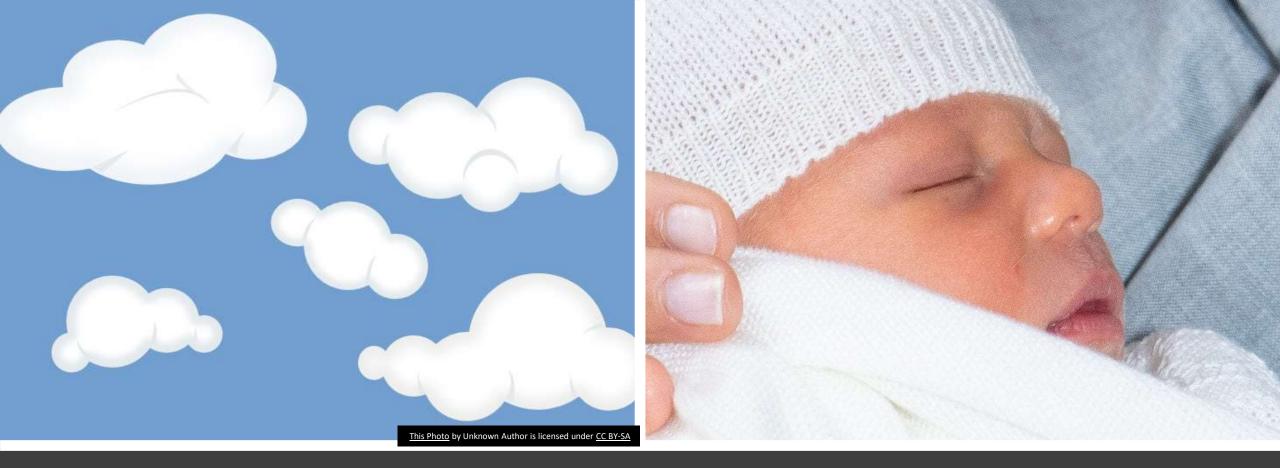
By Jamie - Flickr: Telex machine TTY, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=19282428

LASAR

Can you recognise these machines?

Hint: neither is a computer

The PC as convergence point in the 90's


- PCs became the unified platform three decades ago
- It was much easier to develop an application on a PC rather than design electronics from scratch
- Even industrial process control and ATMs run on PCs
- The Cloud offers a similar convergence point today for different chip architectures

BrayLockBoy - Own work - CC BY-SA 4.0 through Wikipedia

Trivia: What do the Cloud and the youngest British royal baby Archie have in common?

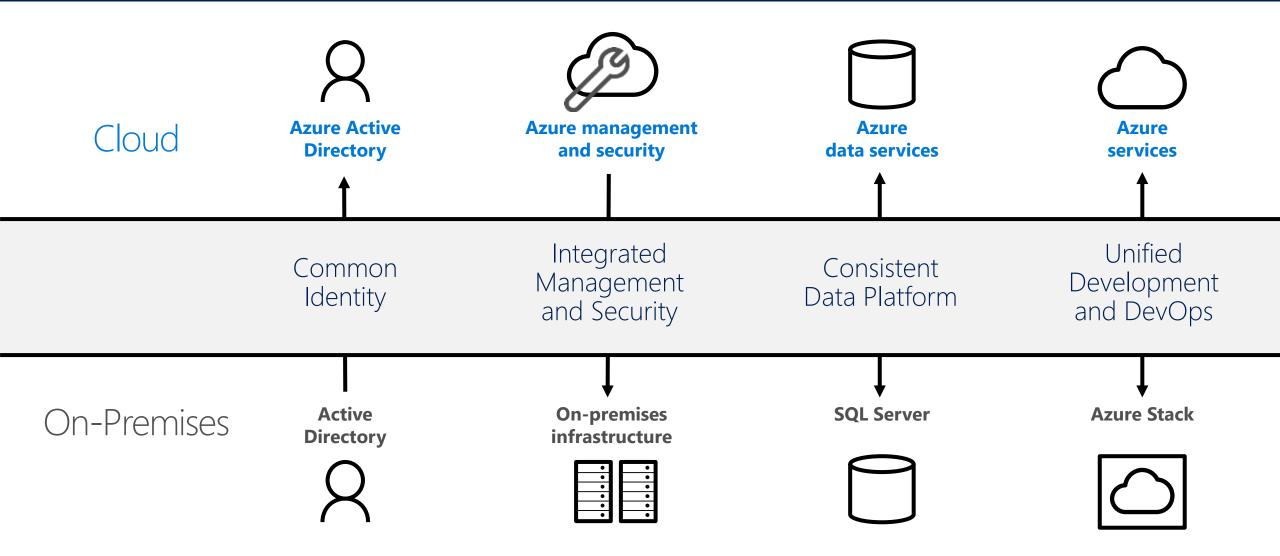
Answer: Their names skyrocketed in popularity very soon after their birth. Just about anything in computing was named or renamed cloud in the past decade.

Microsoft Azure

Trust Protect your business

Open and Hybrid

Build freely, deploy consistently in the cloud & on-prem


Accelerate innovation with the cloud

Data-Driven Intelligence Power decisions & apps with insights

Consistent identity, apps, data & management \ddagger

Open and Hybrid

Microsoft Open Source Fun Facts

- 1. The Vice President of the Apache Foundation works in the Azure Compute team
- 2. Microsoft has the most contributors on GitHub
- 3. Joined Linux Foundation
- 4. The Windows team has a Docker committer
- 5. The co-creator of Kubernetes is the development manager of Azure Resource Manager and Azure Container Service

Azure GPUs

Broad Range of GPU Scenarios

Manufacturing

Automotive

0

Aerospace

Retail

Mereiren ND v2 – Volta Generation GPU Compute

- Excellent for accelerating machine learning and HPC workloads
- Volta SXM GPU instances 8X NVIDIA V100 GPUs interconnected with NVLink mesh
- Tensor Core technology to deliver over 100 TFLOPS of deep learning performance
- Skylake based processor with premium storage support (SSD backed)
- Specs:
 - 640 NVIDIA Tensor Core
 - FP64 7.8 TFLOPS of double precision floating point performance
 - FP32 15.7 TFLOPS of single precision performance
 - GPU Memory 16 GB
 - 300 GB/s GPU interconnect through NVLink

	ND40s_v3			
Cores	40 cores			
GPU	8 x V100 SXM			
Memory	768 GB			
Local Disk	~1.3 TB SSD			
Network	Azure Network + NVLink GPU interconnect			

^{mereview} NV v2 – Updated GPU Visualization Platform

- Get faster results for the your graphic intensive 2D and 3D applications with visualization optimized GPU instances featuring NVIDIA Tesla M60 GPUs
- Broadwell based CPU processor with doubled memory from previous generation (up to 448 GB)
- Premium storage support (SSD backed)
- Grid license included with each GPU instance
- Specs:
 - 2048 NVIDIA CUDA cores per GPU
 - 36 H.264 1080p30 streams
 - GPU Memory 8 GB/GPU

Office Ai	Ps	35 SOLIDWORKS	SIEMENS NX	35 3DEXCITE

NVIDIA Quadro Virtual Workstation Driver

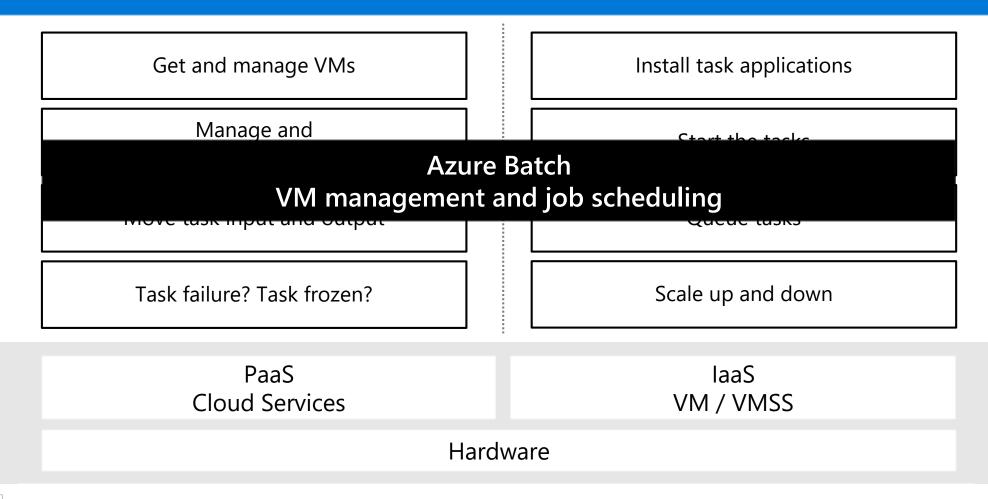
Azure NV/NVIDIA Tesla M60 GPUs

Azure Virtual Machines

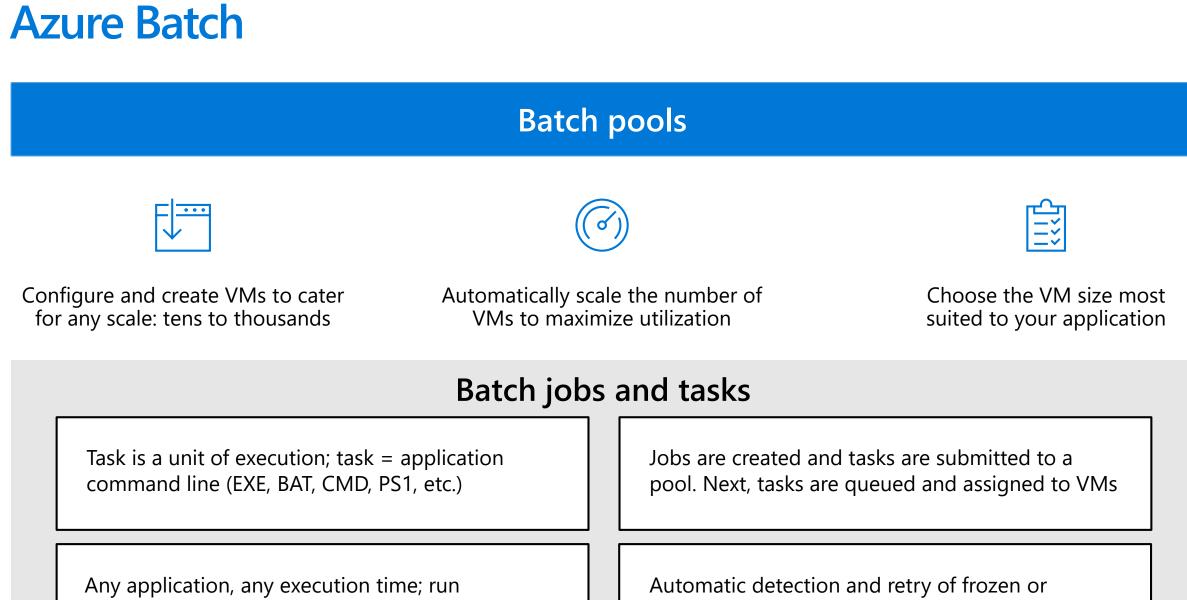
	NV6s_v2	NV12s_v2	NV24s_v2
Cores	6	12	24
GPU	1 x M60	2 x M60	4 x M60
Memory	112 GB	224 GB	448 GB
Local Disk	~700 GB SSD	~1.4 TB SSD	~3 TB SSD
Network	Azure Network	Azure Network	Azure Network
GRID Licenses	1	2	4

Full Lineup of GPU Families

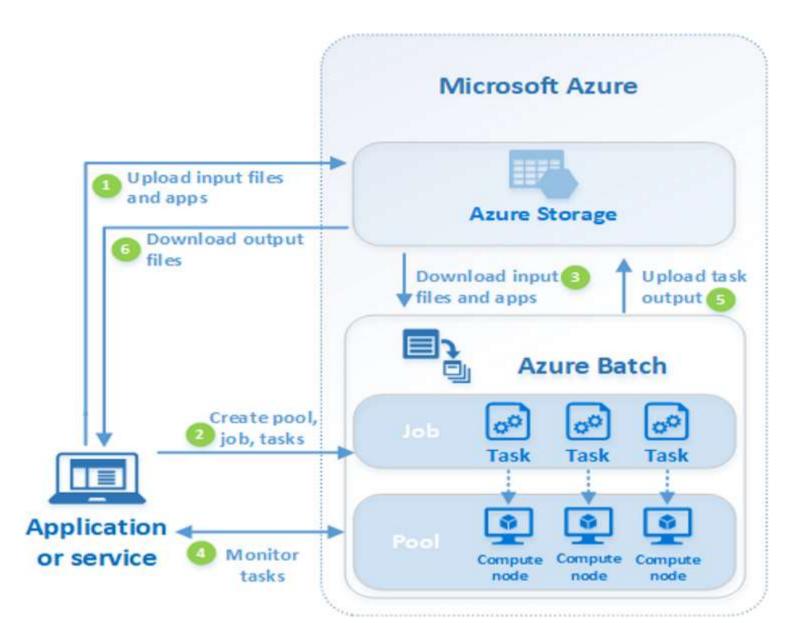
GPU Accelerated Compute Family				
	NC	NC v2	NC v3	
Cores	6, 12, 24	6, 12, 24	6, 12, 24	
GPU	1, 2, or 4 K80 GPU	1, 2, or 4 P100 GPU	1, 2, or 4 V100 GPU	
Memory	56/112/224 GB	112/224/448 GB	112/224/448 GB	
Local Disk	~380/~680/~1.5 TB SSD	~700/~1.4/~3 TB SSD	~700/~1.4/~3 TB SSD	
Network	Azure Network + InfiniBand (largest size only)			



GPU Accelerated Deep Learning Family			GPU Visualization Family		
	ND v1	ND v2	NV v1	Nv v2	
Cores	6, 12, 24	40	6, 12, 24	6, 12, 24	
GPU	1, 2, or 4 P40 GPU	8 V100 SXM GPU	1, 2, or 4 M60 GPU	1, 2, or 4 M60 GPU	
Memory	112/224/448 GB	768 GB	56/112/224 GB	112/224/448 GB	
Local Disk	~700/~1.4/~3 TB SSD	~1.3 TB SSD	~380/~680/~1.5 TB SSD	~700/~1.4/~3 TB SSD	
Network	Azure Network + InfiniBand (largest size only)	Azure Network + NVLink GPU interconnect	Azure Network	Azure Network	


Azure Batch

Service / Solution


© Microsoft Corporation

applications unchanged

failing tasks

How Azure Batch works – intrinsically parallel example

© Microsoft Corporation

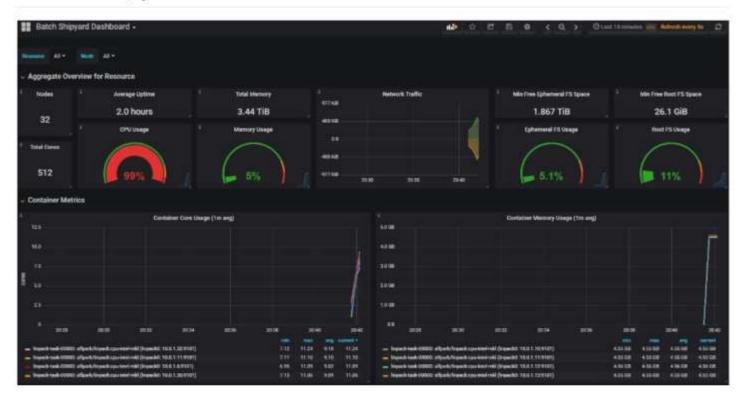
Azure Batch Supported development technologies

Command-Line <u>Azure CLI</u> <u>Azure PowerShell</u>

Languages .NET Java Node.js Python REST

Batch Service REST API

Batch Management REST API


Azure Batch Step-by-Step Tutorials and Training

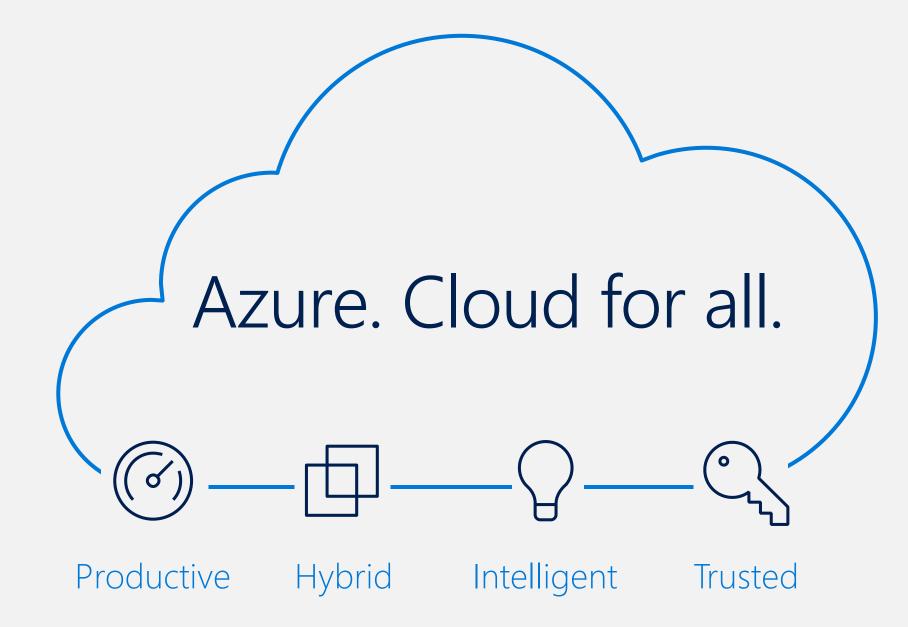
- Learn how to run compute-intensive workloads on Batch.
 - Parallel file processing with .NET SDK
 - Parallel file processing with Python SDK
 - <u>Scene rendering with Arnold</u>
 - Parallel R simulation
 - Tutorial: Trigger a Batch job using Azure Functions
- Free Pluralsight Video Training
 - <u>Microsoft Azure Batch, Getting Started</u>

Containers in Azure Batch

- <u>Batch Shipyard</u> is a tool to help provision, execute, and monitor container-based batch processing and HPC workloads on <u>Azure Batch</u>. Batch Shipyard supports both Docker and Singularity containers.
- <u>https://github.com/Azure/batch-</u> <u>shipyard</u>
- Container Runtime and Image Management
- Data Management and Shared File Systems
- Monitoring
- Open Source Scheduler Integration

Batch Shipyard

Batch Shipyard is a tool to help provision, execute, and monitor container-based batch processing and HPC workloads on Azure Batch. Batch Shipyard supports both Docker and Singularity containers. No experience with the Azure Batch SDK is needed; run your containers with easy-to-understand configuration files. All Azure regions are supported, including non-public Azure regions.


Machine Learning on Azure

Domain specific pretrained models To simplify solution development	O Vision	Speech L	A J Q anguage Web se	arch Decision	
Familiar data science tools To simplify model development	Visual Studio Code	Azure Notebooks	Jupyter Jupyter	Command line	
Popular frameworks To build advanced deep learning solutions	PyTorch	TensorFlow	Scikit-Learn		
Productive services To empower data science and development teams	Azure Machine Learnin	ng Azure I	Databricks	Machine Learning VMs	
Powerful infrastructure To accelerate deep learning	CPU		⊒O IIIIII GPU	FPGA	
From the Intelligent Cloud to the Intelligent Edge					

Hardware accelerated models

General availability

Next Steps:

Learn more about Azure and create your free Azure account <u>https://azure.microsoft.com</u>

Explore Azure Batch https://docs.microsoft.com/en-us/azure/batch/

