
Purely Functional GPU Programming with
Futhark

Troels Henriksen (athas@sigkill.dk)

DIKU
University of Copenhagen

11th of July — GPU Day 2019

λx.x

Troels Henriksen
Postdoctoral researcher at the Department of Computer
Science at the University of Copenhagen (DIKU).
My research involves working on a high-level purely
functional language, called Futhark, and its heavily
optimising compiler.

Two Helpful Quotes

When we had no computers, we had no programming
problem either. When we had a few computers, we had a
mild programming problem. Confronted with machines a
million times as powerful, we are faced with a gigantic
programming problem.

—Edsger W. Dijkstra (EWD963, 1986)

The competent programmer is fully aware of the strictly
limited size of his own skull; therefore he approaches the
programming task in full humility, and among other things
he avoids clever tricks like the plague.

—Edsger W. Dijkstra (EWD340, 1972)

Two Helpful Quotes

When we had no computers, we had no programming
problem either. When we had a few computers, we had a
mild programming problem. Confronted with machines a
million times as powerful, we are faced with a gigantic
programming problem.

—Edsger W. Dijkstra (EWD963, 1986)

The competent programmer is fully aware of the strictly
limited size of his own skull; therefore he approaches the
programming task in full humility, and among other things
he avoids clever tricks like the plague.

—Edsger W. Dijkstra (EWD340, 1972)

The problems we evolved to solve

The problems we are now trying to solve

Human brains simply cannot reason about concurrency
on a massive scale

We need a programming model with sequential semantics,
but that can be executed in parallel.
It must be portable, because hardware continues to change.
It must support modular programming.

Sequential Programming for Parallel Machines

One approach: write imperative code like we’ve always done, and
apply a parallelising compiler to try to figure out whether parallel
execution is possible:

for (int i = 0; i < n; i++) {
ys[i] = f(xs[i]);

}

Is this parallel?

Yes. But it requires careful inspection of read/write indices.

Sequential Programming for Parallel Machines

One approach: write imperative code like we’ve always done, and
apply a parallelising compiler to try to figure out whether parallel
execution is possible:

for (int i = 0; i < n; i++) {
ys[i] = f(xs[i]);

}

Is this parallel?
Yes. But it requires careful inspection of read/write indices.

Sequential Programming for Parallel Machines

What about this one?

for (int i = 0; i < n; i++) {
ys[i+1] = f(ys[i], xs[i]);

}

Yes, but hard for a compiler to detect.

Many algorithms are innately parallel, but phrased
sequentially when we encode them in current languages.
A parallelising compiler tries to reverse engineer the original
parallelism from a sequential formulation.
Possible in theory, is called heroic effort for a reason.

Why not use a language where we can just say exactly what we
mean?

Sequential Programming for Parallel Machines

What about this one?

for (int i = 0; i < n; i++) {
ys[i+1] = f(ys[i], xs[i]);

}

Yes, but hard for a compiler to detect.

Many algorithms are innately parallel, but phrased
sequentially when we encode them in current languages.
A parallelising compiler tries to reverse engineer the original
parallelism from a sequential formulation.
Possible in theory, is called heroic effort for a reason.

Why not use a language where we can just say exactly what we
mean?

Functional Programming for Parallel Machines

Common purely functional combinators have sequential semantics,
but permit parallel execution.

for (int i = 0;
i < n;
i++) {

ys[i] = f(xs[i]);
}

∼ let ys = map f xs

for (int i = 0;
i < n;
i++) {

ys[i+1] = f(ys[i], xs[i]);
}

∼ let ys = scan f xs

So this is solved?

Problem: Turns out purely functional languages are really
slow when compiled naively, and GPUs only support
certain restricted forms of parallelism anyway.

Solution: Spend many years years co-designing a simple
language and a non-simple optimising compiler
capable of compiling it to efficient GPU code:
Futhark!

So this is solved?

Problem: Turns out purely functional languages are really
slow when compiled naively, and GPUs only support
certain restricted forms of parallelism anyway.

Solution: Spend many years years co-designing a simple
language and a non-simple optimising compiler
capable of compiling it to efficient GPU code:
Futhark!

Futhark is a high-level language!

Sequential semantics, parallel operation
Futhark is not a “GPU language”—it is a
hardware-agnostic parallel language.

Co-design of language and compiler
No language features that we do not know how to
compile efficiently. (No recursion! (Yet.))

This presentation is a tour of the language design and
compilation techniques for generating good GPU code.

Futhark is a high-level language!

Sequential semantics, parallel operation
Futhark is not a “GPU language”—it is a
hardware-agnostic parallel language.

Co-design of language and compiler
No language features that we do not know how to
compile efficiently. (No recursion! (Yet.))

This presentation is a tour of the language design and
compilation techniques for generating good GPU code.

Futhark at a Glance

Array construction
iota 5 = [0,1,2,3,4]
replicate 3 1337 = [1337, 1337, 1337]

Only regular arrays: [[1,2], [3]] is illegal.

Second-Order Array Combinators (SOACs)

map f [x1, . . . , xn] → [f x1, . . . , f xn]

map2 g [x1, . . . , xn] [y1, . . . , yn] → [g x1 y1, . . . , g xn yn]

reduce � 0� [x1, . . . , xn] → x1 � . . .� xn

scan � 0� [x1, . . . , xn] → [reduce � 0� [x1],

reduce � 0� [x1, x2],

. . . ,

reduce � 0� [x1, . . . , xn]]

Operator restrictions

Functions/operators used for reduce and scan must be
associative and have a neutral element.

Associativity
(x � y)� z = x � (y � z)

Neutral element
x � 0� = 0� � x = x

Example: ∗ is associative and has 1 as neutral element.

Automatically checking this is undecidable, so we trust the
programmer.

Futhark at a Glance, continued

Data-parallel loops

l e t add two [n] (a : [n] i32) : [n] i32 = map (+ 2) a

l e t sum [n] (a : [n] i32) : i32 = reduce (+) 0 a

l e t sumrows [n] [m] (as : [n] [m] i32) : [n] i32 = map sum as

l e t avg [n] (a : [n] i32) : i32 = sum a / n

Sequential loops

loop x = 1 f o r i < n do
x ∗ (i + 1)

Everything else

if expressions, higher-order functions, tuples, records,
module system, type inference, etc. Most of what you expect
in a functional language.

Compiling Futhark to Python+PyOpenCL

entry sum_nats (n: i32): i32 =
reduce (+) 0 (1...n)

$ futhark pyopencl --library sum.fut

This creates a Python module sum.py which we can use as
follows:
$ python
>>> from sum import sum
>>> c = sum()
>>> c.sum_nats(10)
55
>>> c.sum_nats(1000000)
1784293664

Good choice for all your integer
summation needs!
Or, we could have our Futhark program return an array containing
pixel colour values, and use Pygame to blit it to the screen...

Compiling Futhark to Python+PyOpenCL

entry sum_nats (n: i32): i32 =
reduce (+) 0 (1...n)

$ futhark pyopencl --library sum.fut

This creates a Python module sum.py which we can use as
follows:
$ python
>>> from sum import sum
>>> c = sum()
>>> c.sum_nats(10)
55
>>> c.sum_nats(1000000)
1784293664

Good choice for all your integer
summation needs!
Or, we could have our Futhark program return an array containing
pixel colour values, and use Pygame to blit it to the screen...

Compiling Futhark to Python+PyOpenCL

entry sum_nats (n: i32): i32 =
reduce (+) 0 (1...n)

$ futhark pyopencl --library sum.fut

This creates a Python module sum.py which we can use as
follows:
$ python
>>> from sum import sum
>>> c = sum()
>>> c.sum_nats(10)
55
>>> c.sum_nats(1000000)
1784293664

Good choice for all your integer
summation needs!

Or, we could have our Futhark program return an array containing
pixel colour values, and use Pygame to blit it to the screen...

Compiling Futhark to Python+PyOpenCL

entry sum_nats (n: i32): i32 =
reduce (+) 0 (1...n)

$ futhark pyopencl --library sum.fut

This creates a Python module sum.py which we can use as
follows:
$ python
>>> from sum import sum
>>> c = sum()
>>> c.sum_nats(10)
55
>>> c.sum_nats(1000000)
1784293664

Good choice for all your integer
summation needs!
Or, we could have our Futhark program return an array containing
pixel colour values, and use Pygame to blit it to the screen...

FLATTENING NESTED DATA
PARALLELISM

The Problem

Futhark permits nested (regular) parallelism, but GPUs prefer flat
parallel kernels.

Solution: Have the compiler rewrite program to perfectly nested
maps containing sequential code (or known parallel patterns such
as segmented reduction), each of which can become a GPU kernel.

map (\xs -> let y = reduce (+) 0 xs
in map (+y) xs)

xss
⇓

let ys = map (\xs -> reduce (+) 0 xs) xss
in map2 (\xs y -> map (+y) xs) xss ys

The Problem

Futhark permits nested (regular) parallelism, but GPUs prefer flat
parallel kernels.

Solution: Have the compiler rewrite program to perfectly nested
maps containing sequential code (or known parallel patterns such
as segmented reduction), each of which can become a GPU kernel.

map (\xs -> let y = reduce (+) 0 xs
in map (+y) xs)

xss
⇓

let ys = map (\xs -> reduce (+) 0 xs) xss
in map2 (\xs y -> map (+y) xs) xss ys

The Problem

Futhark permits nested (regular) parallelism, but GPUs prefer flat
parallel kernels.

Solution: Have the compiler rewrite program to perfectly nested
maps containing sequential code (or known parallel patterns such
as segmented reduction), each of which can become a GPU kernel.

map (\xs -> let y = reduce (+) 0 xs
in map (+y) xs)

xss
⇓

let ys = map (\xs -> reduce (+) 0 xs) xss
in map2 (\xs y -> map (+y) xs) xss ys

Moderate flattening is a heuristic

map (\xs -> let y = reduce (+) 0 xs
in map (+y) xs)

xss
⇓

let ys = map (\xs -> reduce (+) 0 xs) xss
in map2 (\xs y -> map (+y) xs) xss ys

Maybe the fastest thing is to launch one thread per element of
xss, even if that is less parallel?

Consider Matrix Multiplication

for i < n:
for j < m:

acc = 0
for l < p:
acc += xss[i,l] * yss[l,j]

res[i,j] = acc

Turning it Functional

map (\xs ->
map (\ys ->

let zs = map2 (*) xs ys
in reduce (+) 0 zs)

(transpose yss))
xss

Using redomap notation

map (\xs ->
map (\ys ->

redomap2 (+) (*) 0 xs ys)
(transpose yss))

xss

redomap2 � f 0� x y ≡ reduce � 0� (map2 f x y)

Emphasizes that a map-reduce composition can be turned into a
fused tight sequential loop, or into a parallel reduction.

Using redomap notation

map (\xs ->
map (\ys ->

redomap2 (+) (*) 0 xs ys)
(transpose yss))

xss

redomap2 � f 0� x y ≡ reduce � 0� (map2 f x y)

Emphasizes that a map-reduce composition can be turned into a
fused tight sequential loop, or into a parallel reduction.

So how should we parallelise this on GPU?

Full flattening

map (\ xs −>
map (\ ys −>

redomap2 (+) (∗) 0
xs ys)

(t r anspose ys s))
xss

All parallelism exploited
Some communication
overhead.
Best if the outer maps do not
saturate the GPU.

Moderate flattening

map (\ xs −>
map (\ ys −>

redomap2 (+) (∗) 0
xs ys)

(t r anspose ys s))
xss

Only cheap outer
parallelism
The redomap2 can then
be block tiled.
Best if the outer maps
saturate the GPU.

There is no one size fits all—and both situations may be
encountered during the program runtime.

So how should we parallelise this on GPU?

Full flattening

map (\ xs −>
map (\ ys −>

redomap2 (+) (∗) 0
xs ys)

(t r anspose ys s))
xss

All parallelism exploited
Some communication
overhead.
Best if the outer maps do not
saturate the GPU.

Moderate flattening

map (\ xs −>
map (\ ys −>

redomap2 (+) (∗) 0
xs ys)

(t r anspose ys s))
xss

Only cheap outer
parallelism
The redomap2 can then
be block tiled.
Best if the outer maps
saturate the GPU.

There is no one size fits all—and both situations may be
encountered during the program runtime.

So how should we parallelise this on GPU?

Full flattening

map (\ xs −>
map (\ ys −>

redomap2 (+) (∗) 0
xs ys)

(t r anspose ys s))
xss

All parallelism exploited
Some communication
overhead.
Best if the outer maps do not
saturate the GPU.

Moderate flattening

map (\ xs −>
map (\ ys −>

redomap2 (+) (∗) 0
xs ys)

(t r anspose ys s))
xss

Only cheap outer
parallelism
The redomap2 can then
be block tiled.
Best if the outer maps
saturate the GPU.

There is no one size fits all—and both situations may be
encountered during the program runtime.

Simple Incremental Flattening

At every level of map-nesting we have two options:

1. Continue flattening inside the map, exploiting the
parallelism there.

2. Sequentialise the map body; exploiting only the parallelism
on top.

Moderate flattening—Futhark’s old technique—uses a
heuristic to pick between these options. E.g, nested
redomaps are always sequentialised.
Incremental flattening generates both versions and uses a
predicate to pick at runtime.

Multi-versioned matrix multiplication

xss : [n][p]i32
yss : [p][m]i32.

i f n ∗ m > t0 then
map (\ xs −>

map (\ ys −>
redomap2 (+) (∗) xs ys)

(t r anspose ys s))
xss

e l s e
map (\ xs −>

map (\ ys −>
redomap2 (+) (∗) xs ys)

(t r anspose ys s))
xss

The t0 threshold parameter is used to select between the two
versions—and should be auto-tuned on the concrete hardware.

Matrix multiplication on NVIDIA K40

0 1 2 3 4 5 6 7 8 9 10

n

0µs

2000µs

4000µs

6000µs

8000µs

10000µs

12000µs
moderate
incremental

incremental (auto-tuned)

cuBLAS

Multiplying matrices of size 2n × 2m and 2m × 2n, where
m = 25− 2n, meaning that work is constant as we vary n.

Matrix multiplication on NVIDIA K40

0 1 2 3 4 5 6 7 8 9 10

n

0µs

2000µs

4000µs

6000µs

8000µs

10000µs

12000µs
moderate
incremental

incremental (auto-tuned)

cuBLAS

Multiplying matrices of size 2n × 2m and 2m × 2n, where
m = 25− 2n, meaning that work is constant as we vary n.

Matrix multiplication on NVIDIA K40

0 1 2 3 4 5 6 7 8 9 10

n

0µs

2000µs

4000µs

6000µs

8000µs

10000µs

12000µs
moderate
incremental

incremental (auto-tuned)

cuBLAS

Multiplying matrices of size 2n × 2m and 2m × 2n, where
m = 25− 2n, meaning that work is constant as we vary n.

Matrix multiplication on NVIDIA K40

0 1 2 3 4 5 6 7 8 9 10

n

0µs

2000µs

4000µs

6000µs

8000µs

10000µs

12000µs
moderate
incremental

incremental (auto-tuned)

cuBLAS

Multiplying matrices of size 2n × 2m and 2m × 2n, where
m = 25− 2n, meaning that work is constant as we vary n.

INTRA-GROUP PARALLELISM

More complex nested parallelism

The following is the essential core of the LocVolCalib benchmark
from the FinPar suite.

map (\xss ->
map (\xs ->

let bs = scan ⊕ d⊕ xs
let cs = scan ⊗ d⊗ bs
in scan � d� cs)

xss)
xsss

How can we map the application parallelism to hardware
parallelism?

Option I: sequentialise the inner scans

map (\xss ->
map (\xs ->

let bs = scan ⊕ d⊕ xs
let cs = scan ⊗ d⊗ bs
in scan � d� cs)

xss)
xsss

scan is relatively expensive in parallel, so this is a good option if
the outer dimensions provide enough parallelism.

Option II: flatten and parallelise inner scans

Moderate and incremental flattening uses loop distribution (or
fission) to create map nests:

map (\xss ->
map (\xs ->

let bs = scan ⊕ d⊕ xs
let cs = scan ⊗ d⊗ bs
in scan � d� cs)

xss)
xsss

Option II: flatten and parallelise inner scans

Moderate and incremental flattening uses loop distribution (or
fission) to create map nests:

let csss =
map (\xss ->

map (\xs ->
let bs = scan ⊕ d⊕ xs
let cs = scan ⊗ d⊗ bs
in cs)

xss)
xsss

in
map (\css -> map (\cs -> scan � d� cs)

css)
csss

Option II: flatten and parallelise inner scans

Moderate and incremental flattening uses loop distribution (or
fission) to create map nests:

let bsss =
map (\xss -> map (\xs -> scan ⊕ d⊕ xs) xss)

xsss
let csss =

map (\bss -> map (\bs -> scan ⊗ d⊗ bs) bss)
bsss

in
map (\css -> map (\cs -> scan � d� cs) css)

csss

Each map nests correspond to a segmented scan operation,
which is straightforward to execute on the GPU.
Moderate flattening does this.

Option III: Mapping innermost parallelism to the
workgroup level

map (\ xss −>
map (\ xs −>

l e t bs = scan ⊕ d⊕ xs
l e t cs = scan ⊗ d⊗ bs
i n scan � d� cs)

xss)
xs s s

Each iteration of the outer maps is assigned to one GPU
workgroup1, and each scan is executed intra-workgroup and
in local memory2.
Only works if the innermost parallelism fits in a workgroup.

1Thread block in CUDA
2Shared memory in CUDA

LocVolCalib performance

AMD Vega 64

small (baseline: 110ms)

1.0 1.0

3.3

0.3

4.0

medium (baseline: 132ms)

1.0 1.3

3.8

0.7

4.0

large (baseline: 1862ms)

1.0 0.7

4.8

1.7

5.4

MF

IF

AIF

FinPar (outer parallelism)

FinPar (all parallelism)

NVIDIA K40

small (baseline: 238ms)

1.0 1.0

1.7

0.5

1.1

medium (baseline: 342ms)

1.0

1.4
1.7

1.1
1.3

large (baseline: 5087ms)

1.0

2.0 2.0

3.5

2.2

MF

IF

AIF

FinPar (outer parallelism)

FinPar (all parallelism)
Speedup versus moderate flattening. Higher is better.

Other Optimisations Performed by the Futhark Compiler

Aggressive fusion:

map f (map g xs)⇒ map (f ◦ g) xs

Pervasive struct-of-arrays representation, i.e. representing

[(1, 2), (3, 4), (5, 6)]

as
([1, 3, 5], [2, 4, 6])

Automatically rearrange representation of arrays to ensure
coalesced memory access, e.g. picking column- or row-major
(or both!) as necessary.
Local memory block tiling when threads access same data.
Standard compiler optimisations: inlining, CSE, constant
folding, constant propagation, etc...

Other Optimisations Performed by the Futhark Compiler

Aggressive fusion:

map f (map g xs)⇒ map (f ◦ g) xs

Pervasive struct-of-arrays representation, i.e. representing

[(1, 2), (3, 4), (5, 6)]

as
([1, 3, 5], [2, 4, 6])

Automatically rearrange representation of arrays to ensure
coalesced memory access, e.g. picking column- or row-major
(or both!) as necessary.
Local memory block tiling when threads access same data.
Standard compiler optimisations: inlining, CSE, constant
folding, constant propagation, etc...

Other Optimisations Performed by the Futhark Compiler

Aggressive fusion:

map f (map g xs)⇒ map (f ◦ g) xs

Pervasive struct-of-arrays representation, i.e. representing

[(1, 2), (3, 4), (5, 6)]

as
([1, 3, 5], [2, 4, 6])

Automatically rearrange representation of arrays to ensure
coalesced memory access, e.g. picking column- or row-major
(or both!) as necessary.

Local memory block tiling when threads access same data.
Standard compiler optimisations: inlining, CSE, constant
folding, constant propagation, etc...

Other Optimisations Performed by the Futhark Compiler

Aggressive fusion:

map f (map g xs)⇒ map (f ◦ g) xs

Pervasive struct-of-arrays representation, i.e. representing

[(1, 2), (3, 4), (5, 6)]

as
([1, 3, 5], [2, 4, 6])

Automatically rearrange representation of arrays to ensure
coalesced memory access, e.g. picking column- or row-major
(or both!) as necessary.
Local memory block tiling when threads access same data.

Standard compiler optimisations: inlining, CSE, constant
folding, constant propagation, etc...

Other Optimisations Performed by the Futhark Compiler

Aggressive fusion:

map f (map g xs)⇒ map (f ◦ g) xs

Pervasive struct-of-arrays representation, i.e. representing

[(1, 2), (3, 4), (5, 6)]

as
([1, 3, 5], [2, 4, 6])

Automatically rearrange representation of arrays to ensure
coalesced memory access, e.g. picking column- or row-major
(or both!) as necessary.
Local memory block tiling when threads access same data.
Standard compiler optimisations: inlining, CSE, constant
folding, constant propagation, etc...

So is it fast?

The Question: Is it possible to construct a purely functional
hardware-agnostic programming language that is convenient to
use and provides good parallel performance?
Hard to Prove: Only performance is easy to quantify, and even
then...

No good objective criterion for whether a language is “fast”.
Best practice is to take benchmark programs written in other
languages, port or re-implement them, and see how they
behave.
These benchmarks originally written in low-level CUDA or
OpenCL.

Futhark versus hand-written OpenCL

AMD Vega 64

18
.3

89
.8

18
.7

89
.1

1.3s
D1

12.1s
D2

Heston

1.
0

1.
7

1.
0

1.
8

0.
9

0.
4

6ms
D1

12ms
D2

OptionPricing

1.
7

1.
3

1.
7

1.
3

0.
9

0.
2

0.7ms
D1

5ms
D2

Backprop

1.
0

1.
0

1.
0

3.
3

0.
8 0.

9

1.8ms
D1

0.8ms
D2

LavaMD

1.
0

1.
0

12
.2

12
.1

23
.0 26

.8

195ms
D1

89ms
D2

NW

1.
0

1.
0

1.
0

3.
0

0.
1

6ms
D1

7ms
D2

NN

2.
1 2.

3
2.

1 2.
3

0.
9

26ms
D1

27ms
D2

SRAD

1.
1

1.
1

1.
1

6.
9

0.
2

1.4ms
D1

2.0ms
D2

Pathfinder

Not autotuned Autotuned HandwrittenNVIDIA K40

34
.1

57
.5

34
.4

57
.6

1.9s
D1

17.6s
D2

Heston

1.
0

2.
0

1.
0

2.
2

1.
2

0.
7

12ms
D1

14ms
D2

OptionPricing

1.
3

1.
1

1.
3

1.
1

0.
6

0.
4

0.6ms
D1

19ms
D2

Backprop

1.
0

1.
0

1.
0 1.

0

0.
8

0.
7

3.4ms
D1

0.5ms
D2

LavaMD

1.
0

1.
0

18
.9

19
.1

37
.6

36
.6

216ms
D1

104ms
D2

NW

1.
0

1.
0

1.
0

8.
1

0.
05

8ms
D1

24ms
D2

NN

0.
9

2.
3

0.
9

2.
3

0.
7

15ms
D1

46ms
D2

SRAD

1.
0

1.
0

1.
0

2.
7

0.
05

1.2ms
D1

1.2ms
D2

Pathfinder

Not autotuned Autotuned Handwritten

Higher is better.
Handwritten OpenCL of widely varying quality.
This makes them “realistic”, in a sense.

Conclusions

Futhark is a data-parallel array language with an optimising
compiler that generates CUDA and OpenCL.
Futhark will not outcompete hand-tuned primitives, but
application performance is often competitive.
Everything is under a free software license.

Try out Futhark for yourself! futhark-lang.org

futhark-lang.org

Conclusions

Futhark is a data-parallel array language with an optimising
compiler that generates CUDA and OpenCL.
Futhark will not outcompete hand-tuned primitives, but
application performance is often competitive.
Everything is under a free software license.

Try out Futhark for yourself! futhark-lang.org

futhark-lang.org

APPENDICES

Computing Histograms

We are given an integer constant k and an array
is : [n]i32

and we must produce an array
hist : [k]i32

where hist[i] is the number of occurences of i in is.

Imperative Implementation

i n t h i s t [k] = {0 , . . . , 0}
f o r (i n t i = 0 ; i < n ; i ++) {

va r j = i s [i] ;
h i s t [j] + + ;

}

O(k + n) work.
(May have cache issues for large k, but we’ll ignore that.)
Neither parallel nor functional.

Data-parallel Implementation

let histogram [n] (k: i32) (is: [n]i32): [k]i32 =
reduce (map2 (+))

(replicate k 0)
(map (\i -> replicate k 0 with [i] = 1)

is)

O(k · n) work—Bad.
O(log(n)) span—Good.

Alternative data-parallel Implementation

let histogram [n] (k: i32) (is: [n]i32): [k]i32 =
map (\j -> reduce (+) 0

(map (\i -> if i == j
then 1
else 0)

is))
(iota k)

O(k · n) work—Bad.
O(log(n)) span—Good.

Theoretically efficient implementation

let histogram [n] (k: i32) (is: [n]i32) =
let is’ =

radix_sort i32.num_bits i32.get_bit is
let flags =
map2 (!=) is’ (rotate (-1) is’)

in segmented_reduce (+) 0
flags
(replicate n 1)

O(k + n) work—Good.
O(log(n)) span—Good.
Assumes bins are non-empty (can be fixed).
That radix sort is really slow in practice.

How can we do better?

Atomic operations in OpenCL

int atomic_add(volatile __global int *p,
int val)

int atomic_cmpxchg(volatile __global int *p,
int cmp,
int val)

CPUs and GPUs support certain atomic operations with
hardware-level synchronisation.
Can support very efficient histograms.
Side-effecting, so cannot expose directly in a functional
language.

Generalised Histograms
val reduce_by_index [k] [n] ’t :

[k]a
-> (a -> a -> a) -> a
-> [n]i32 -> [n]a
-> [k]a

Semantically, an application

reduce by index hist f y is xs

returns the array dest, but modified according to the following
imperative pseudocode:

for (int j = 0; j < n; j < n) {
int i = is[j];
if (i >= 0 && i < k) {

hist[i] = f(hist[i], xs[j]);
}

}

Generalised Histograms on the GPU
To avoid bin conflicts, threads are grouped, with each group
producing a subhistogram, which is then combined to a single
result.

Atomics are used to compute the subhistograms, and a
segmented reduction for the final result.
Use specialised atomic if possible; fall back to spinlock with
compare-and-exchange for complex operators.
Subhistograms in local memory3 if small enough.

3Shared memory in CUDA terms.

Histogram performance on Vega 64 GPU

n = 106

0 500 1000 1500 2000
k

0

50

100

150

200

250

300

M
illi

se
co

nd
s

segmented reduction
map-reduce
reduce_by_index

