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Q Agenda

e Simulation for self-driving
* Limitations of game engines

e Synthesizing camera images

* Sensor system and scheduling
* CPU Scheduler
* GPU Scheduler
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Q Simulation for self-driving

» Safe operation of self-driving systems requires
large-scale testing

* Huge distances must be covered in various road
conditions and environments

* Limited testing possibilities in the real world

* Simulators provide great tools to satisfy these
requirements
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@ Simulation for self-driving

* Simulators must be comprehensive and robust :

* Diversity of maps, environments, conditions and driving
cultures

* Repeatability of tests and scenarios

* Pixel-precise deterministic rendering

* Physical realism

* Ready-access for self-driving developers and engineers

* Efficient use of hardware resources, from laptops to
servers
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Q Limitations of game engines

* Several problems encountered with first, game engine
based simulator

* Rendering images produced by ultra-wide and narrow
camera lenses required certain modifications

e Performance issues
e Artifacts occurred in post-process effects
* No support for using multiple GPUs

* These specific demands cannot be
answered efficiently by game engines

* First iteration supported formulating
the specifications mentioned

e Especially for the sensor system and camera pipeline
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Q Synthesizing camera
images
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@ Synthesizing camera images

Problem of simulating lenses

GPU rasterization-based rendering pipeline

* Ray-tracing might be an option for simulating lenses in
the future

Vulkan based graphics backend

* Multi-platform
Multi-GPU

* Complex rendering pipeline
* First phase: environment capture (PBR pipeline)

* Second phase: camera lens distortion
* Pinhole, Fisheye
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m Environment capture

Shadow pass

Deferred rendering pass

Atmosphere rendering

Forward rendering pass
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Q Distortion and post-process

Distortion pass

Tone-mapping pass

Anti-aliasing
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Q Sensor system and scheduling
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Q Sensor system and scheduling

* Our simulated world is a graph
* Virtual objects
* Hierarchy of various types of nodes (actor-, capture-, mesh-,
etc. nodes)
* Basic concept of the sensor system
* Scene capture nodes can be attached to actor nodes
* These capture nodes provide data for their sensor nodes

* Resource management
* Executing sensor tasks on CPU cores
e Distributing rendering tasks among multiple GPUs
* We implemented CPU- and GPU schedulers for this purpose
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Q Typical sensor setup
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Q Sensor task graph
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Q Sensor task graph

CPU Scheduler

Actor with
sensors

Sensor
capture
frustum cull

Create
capture task Capture
graph update

Capture

Scene
(per sensor) Render

capture

Shadow frustum cull
update

images




Q Sensor task graph
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@ Rendering images

 Rendering
* RGB-, Bayer images
*  Segmentation, Distance images
* Etc.

*  Two main phases
* Executing rendering operations
* Readback from devices

e GPU Scheduler

* Manages GPU resources
* Chooses a GPU slot for a task

* Definitions
 GPU Slot — An operation buffer on a specific GPU
* GPU Task — Subset of GPU operations in a GPU Slot
e GPU Task Queue — Set of GPU Tasks, submission to GPU
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Q GPU Scheduler Architecture
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GPU Scheduler

Scene Capture Node

\\Initialization

Offscreen Backbuffer

GPU Resource Container

GPU Resource Container

A 4

Scene capture
node




m Initialization and Render Images

Offscreen
Backbuffer

GPUX/SlotY GPU Task Queue \

Readback
Manager

Blit(GPUTQ

PB Rendering
Pipeline

Render(GPUTQ

GPU Task
GPU Task

Render Images GPU Texture
Resources




What we achieved?




Q What we achieved?
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Thank you for your attention!
Do you have any questions?



