O ~morve

Optimal scheduling in a multi-GPU
environment

2019/07/11

Q Agenda

e Simulation for self-driving
* Limitations of game engines

e Synthesizing camera images

* Sensor system and scheduling
* CPU Scheduler
* GPU Scheduler

L el

m Simulation for self-driving

e

Q Simulation for self-driving

» Safe operation of self-driving systems requires
large-scale testing

* Huge distances must be covered in various road
conditions and environments

* Limited testing possibilities in the real world

* Simulators provide great tools to satisfy these
requirements

L el

@ Simulation for self-driving

* Simulators must be comprehensive and robust :

* Diversity of maps, environments, conditions and driving
cultures

* Repeatability of tests and scenarios

* Pixel-precise deterministic rendering

* Physical realism

* Ready-access for self-driving developers and engineers

* Efficient use of hardware resources, from laptops to
servers

9

Q Limitations of game engines

* Several problems encountered with first, game engine
based simulator

* Rendering images produced by ultra-wide and narrow
camera lenses required certain modifications

e Performance issues
e Artifacts occurred in post-process effects
* No support for using multiple GPUs

* These specific demands cannot be
answered efficiently by game engines

* First iteration supported formulating
the specifications mentioned

e Especially for the sensor system and camera pipeline

L el

Q Synthesizing camera
images

e

@ Synthesizing camera images

Problem of simulating lenses

GPU rasterization-based rendering pipeline

* Ray-tracing might be an option for simulating lenses in
the future

Vulkan based graphics backend

* Multi-platform
Multi-GPU

* Complex rendering pipeline
* First phase: environment capture (PBR pipeline)

* Second phase: camera lens distortion
* Pinhole, Fisheye

L el

m Environment capture

Shadow pass

Deferred rendering pass

Atmosphere rendering

Forward rendering pass
—d

Q Distortion and post-process

Distortion pass

Tone-mapping pass

Anti-aliasing

gy ————

Q Sensor system and scheduling

e

Q Sensor system and scheduling

* Our simulated world is a graph
* Virtual objects
* Hierarchy of various types of nodes (actor-, capture-, mesh-,
etc. nodes)
* Basic concept of the sensor system
* Scene capture nodes can be attached to actor nodes
* These capture nodes provide data for their sensor nodes

* Resource management
* Executing sensor tasks on CPU cores
e Distributing rendering tasks among multiple GPUs
* We implemented CPU- and GPU schedulers for this purpose

9

Q Typical sensor setup

Actor with
sensors

Scene Scene
capture capture
node 1

Camera Bounding Lane detect Obstacle
Radar sensor
sensor box sensor sensor sensor

Q Sensor task graph

_ CPU Scheduler
Actor with I

Sensors

Sensor
capture
frustum cull

Create
capture task Capture

graph update Scene

Render
(per sensor) capture .
images

Shadow frustum cull
update

Capture

GPU Scheduler

9

Actor with
sensors

Create
capture task
graph
(per sensor)

Sensor
update

Capture
update

Shadow
update

Q Sensor task graph

CPU Scheduler

|

Sensor
capture
frustum cull

Scene
capture
frustum cull

Render
images

GPU Scheduler

Capture

Q Sensor task graph

CPU Scheduler

Actor with
sensors

Sensor
capture
frustum cull

Create
capture task Capture
graph update

Capture

Scene
(per sensor) Render

capture

Shadow frustum cull
update

images

Q Sensor task graph

_ CPU Scheduler
Actor with I

Sensors

Sensor
capture
frustum cull

Create
capture task Capture

graph update Scene

Render
(per sensor) capture .
images

Shadow frustum cull
update

GPU Scheduler

9

@ Rendering images

 Rendering
* RGB-, Bayer images
* Segmentation, Distance images
* Etc.

* Two main phases
* Executing rendering operations
* Readback from devices

e GPU Scheduler

* Manages GPU resources
* Chooses a GPU slot for a task

* Definitions
 GPU Slot — An operation buffer on a specific GPU
* GPU Task — Subset of GPU operations in a GPU Slot
e GPU Task Queue — Set of GPU Tasks, submission to GPU

L el

Q GPU Scheduler Architecture

GPU Resource Container

GPU Scheduler

OffscreenBackbufferO

Sloto Operation0
OperationM
SlotK lotK
° Slot OnFinished() |

> GPU Task Queue

9

GPU Scheduler

Scene Capture Node

\\Initialization

Offscreen Backbuffer

GPU Resource Container

GPU Resource Container

A 4

Scene capture
node

m Initialization and Render Images

Offscreen
Backbuffer

GPUX/SlotY GPU Task Queue \

Readback
Manager

Blit(GPUTQ

PB Rendering
Pipeline

Render(GPUTQ

GPU Task
GPU Task

Render Images GPU Texture
Resources

What we achieved?

Q What we achieved?

Front Stereo Left Developer View

Roof Tilt Front Back Door Left Mirror Right Rear Road Left Roof Front Right Back Door Right

| S A

Road Mirror Right Roof Front Left Roof Rear Right Front Road Forward Rear Road Right

—T—
T

Rear Stereo Left Front Stereo Rig| Rear Road Backward Road Mirror Left Roof Right

Mg (S Mg

@ What we achieved?

RO W
; A T
;\k\j

O ~morve

Thank you for your attention!
Do you have any questions?

