GPU-based real-time trajectory estimation from videos of vehicle-mounted cameras

Balázs Piszkor, I. Gergő Gál, Tekla Tóth, Levente Hajder
Faculty of Informatics, Eötvös Loránd University
July 11, 2019

EFOP-3.6.3-VEKOP-16-2017-00001

Introduction

- Cameras are essential in visual perception.
- Estimation of extrinsic camera parameters ('pose') is a basic problem in both
- computer vision and
- robotics.
- Our work deals with the utilization of affine transformations for pose estimation
- Instead of using only point correspondences.
- GPU-powered implementation straightforward.
- Possible application area: autonomous driving.
- Autonomous cars are equipped with digital cameras.
- Autonomous driving is very popular.

Motivation: Three-view Geometry of a Surflet

- Perspective (pinhole) camera applied

Point Correspondence (PC)-based Approaches

- Common approaches: 3D parameters estimated from patch centers

Affine Correspondence (AC)-based Approaches

- Novel Approach: Patch Deformation Considered.
\rightarrow 3D motion / surflet normal partially decoded in affinities

Motivation: Example for AC-utilization

- Two frames made by a car-mounted camera. It is trivial that scale change of patches depends on the distance of the objects.

Literature Overview

- PC-based solution dominates the literature, e.g. [Hartley\&Zissermann]
- ACs can be applied for estimating
- Surface normals: [Köser PhD 2009], [Barath\&Hajder CVWW2014+VISAPP2015]
- Homographies: [Barath\&Hajder PRL 2017]
- Fundamental matrix:
- from 3 ACs [Bentolila \& Francos CVIU 2014]
- Essential matrix (relative pose):
- from 2 ACs: [Raposo et al. CVPR 2016]
- from 2ACs, focal length also estimated: [Barath et al. CVPR 2017]
- Camera parameters [Eichhardt \& Hajder ICPR 2016] [Eichhardt \& Chetverikov ECCV 2018]
- Structure and Motion (SfM) [Eichhardt \& Hajder ICCV WS 2017]

General Epipolar Geometry

- Essential matrix consists of the extrinsic camera parameters:
- Translation vector without scale \mathbf{t} (2 DoF)
- Rotation matrix \mathbf{R} (3 DoF)

$$
\mathbf{E}=[\mathbf{t}]_{X} \mathbf{R}
$$

- Relationship of fundamental and essential matrices:

$$
\mathbf{F}=\mathbf{K}_{1}^{-T} \mathbf{E} \mathbf{K}_{2}^{-1}
$$

Epipolar geometry + Point Correspondences

- Each point pair yields one well-known equation for fundamental/essential matrices:
- Point correspondences in images given in homogeneous form:

$$
\mathbf{p}_{1}^{T}=\left[\begin{array}{lll}
u_{1} & v_{1} & 1
\end{array}\right] \quad \mathbf{p}_{2}^{T}=\left[\begin{array}{lll}
u_{2} & v_{2} & 1
\end{array}\right]
$$

- They should fulfill:

$$
\mathbf{p}_{1}^{\top} \mathbf{F} \mathbf{p}_{2}=0
$$

- For an essential matrix \mathbf{E} :

$$
\mathbf{p}_{1}^{T} \mathbf{K}_{1}^{-T} \mathbf{E K}_{2}^{-1} \mathbf{p}_{2}=0
$$

- Constraints for \mathbf{E}
- Singularity: $\operatorname{det}(\mathbf{E})=0$.
- Trace constraints: $2 \mathbf{E E} \mathbf{E}^{\top} \mathbf{E}-\operatorname{Tr}\left(\mathbf{E E}^{T}\right) \mathbf{E}=\mathbf{0}$.

Epipolar geometry + Affine Transformations

- Point correspondences are locations, affine transformations determines
- Directions of lines, and
- Scale along these directions.

Epipolar geometry + Affine Transformations

- Fundamental matrix determines the scale along the perpendicular direction of epipolar lines
- $\mathbf{A}^{-T}\left(\mathbf{F}^{T} \mathbf{p}_{2}\right)_{1: 2}=-\left(\mathbf{F} \mathbf{p}_{1}\right)_{1: 2}$
[Barath \& Hajder CVPR 2017]

Planar Motion + Calibrated Camera

- Planar motion:
- Road is flat.
- Camera is mounted on the vehicle.
- Image plane is perpendicular to the ground.
- Extrinsic camera parameters are special in this case:

$$
\mathbf{t}=\left[\begin{array}{l}
x \\
0 \\
y
\end{array}\right]=\nu\left[\begin{array}{c}
\cos \beta \\
0 \\
\sin \beta
\end{array}\right], \quad R=\left[\begin{array}{ccc}
\cos \alpha & 0 & \sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right]
$$

- Essential matrix:

$$
\mathbf{E}=[\mathbf{t}]_{x} \mathbf{R} \sim\left[\begin{array}{ccc}
0 & -\sin \beta & 0 \\
\sin (\alpha+\beta) & 0 & -\cos (\alpha+\beta) \\
0 & \cos \beta & 0
\end{array}\right]
$$

Planar Motion + Calibrated Camera

- One linear equation for point localizations from $\mathbf{p}_{1}^{\top} \mathbf{F p}_{2}=0$:
$-u_{1} v_{2} \sin \beta+u_{2} v_{1} \sin (\alpha+\beta)-v_{1} \cos (\alpha+\beta)+v_{2} \cos \beta=0$
- Two linear equations for affine transformation \mathbf{A} from $\mathbf{A}^{-T}\left(\mathbf{F}^{\top} \mathbf{p}_{2}\right)_{1: 2}=-\left(\mathbf{F} \mathbf{p}_{1}\right)_{1: 2}:$
$a_{11} v_{1} \sin (\alpha+\beta)-a_{21} \cos (\alpha+\beta)+\left(v_{2}+a_{21} v_{1}\right) \cos \beta=0$
$-\sin \beta+a_{11} v_{1} \sin (\alpha+\beta)-a_{22} \sin (\alpha+\beta)+a_{22} u_{1} \sin \beta=0$
- Three equations, two unknowns: angles α, β.

Planar Motion + Calibrated Camera

- Problem can be written in matrix form $\mathbf{A x}=\mathbf{0}$ as

$$
\left[\begin{array}{cccc}
v_{2} & -u_{1} v_{2} & -v_{1} & u_{2} v_{1} \\
v_{2}+a_{21} v_{1} & 0 & -a_{21} & a_{11} v_{1} \\
a_{22} u_{1} & -1 & -a_{22} & -u_{2}-a_{12} v_{1}
\end{array}\right]\left[\begin{array}{c}
\cos \beta \\
\sin \beta \\
\cos (\alpha+\beta) \\
\sin (\alpha+\beta)
\end{array}\right]
$$

- Simplest solution for \mathbf{x} is the null-vector of matrix \mathbf{A}.

$$
\operatorname{null}(\mathbf{A})=\left[\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3} \\
n_{4}
\end{array}\right] \sim\left[\begin{array}{c}
\cos \beta \\
\sin \beta \\
\cos (\alpha+\beta) \\
\sin (\alpha+\beta)
\end{array}\right]
$$

- Scale of null vectors retrieved from constraint $\mathbf{x}^{\top} \mathbf{x}=2$

Planar motion + Calibrated Camera

- Problem can be reformulated as $\mathbf{A}_{1} \mathbf{v}_{1}+\mathbf{A}_{2} \mathbf{v}_{2}=\mathbf{0}$, where

$$
\left.\begin{array}{l}
\mathbf{A}_{1}=\left[\begin{array}{cc}
v_{2} & -u_{1} v_{2} \\
v_{2}+a_{21} v_{1} & 0 \\
a_{22} u_{1} & -1
\end{array}\right], \mathbf{A}_{2}=\left[\begin{array}{cc}
-v_{1} & u_{2} v_{1} \\
-a_{21} & a_{11} v_{1} \\
-a_{22} & -u_{2}-a_{12} v_{1}
\end{array}\right] \\
\mathbf{v}_{1}=\left[\begin{array}{lll}
\cos \beta & \sin \beta
\end{array}\right]^{T} \quad \mathbf{v}_{2}=[\cos (\alpha+\beta) \\
\sin (\alpha+\beta)
\end{array}\right]^{T} .
$$

- Linear problem with constraints $\mathbf{v}_{1}^{\top} \mathbf{v}_{1}=1$ and $\mathbf{v}_{2}^{\top} \mathbf{v}_{2}=1$.
- Optimal solution: via sixth or tenth degree polynomial.
- Fast solution by alternation: \mathbf{v}_{2} fixed, \mathbf{v}_{1} optimally estimated and vice versa.
- Solution by roots of a quartic polynomial.

Robustification

- Robustification is very efficient as only one affine correspondence required.
- Each AC determines the two angles.
- Moreover, the task is over-determined.
- Two parameters estimated, inliers placed around correct solution.
- We have tried two strategies:
- Histogram Voting for one of the angles.
- RANSAC-like filtering: GC-RANSAC [Barath \& Matas CVPR 2018].

Synthesized Tests: General Motion

- Estimation error for the angles, general vehicle motion.

Synthesized Tests: Forward Motion

Forward Motion [rotation]

Forward Motion [translation]

- Estimation error for the angles, forward motion.

Synthesized Tests: Sideways Motion

- Estimation error for the angles, sideways motion.

GPU implementation

- GPU implementation of the approach is straightforward.
- Hardware: Nvidia GTX 950M.
- Bottleneck: feature matching
- Image processing methods are ideal for parallelization.
- OpenCV's Cuda extension (xfeatures2d module) applied.
- Trajectory estimation: own CUDA implementation
- Most complex component: roots of a quartic polynomial
- Solved by Ferrari's method
- Histogram voting: CPU-implementation.

Real Tests: Malaga dataset

- Trajectories computed by forming many stereo pairs from a video.
- Can work real-time (~ 5 FPS) on modern GPUs. Affine matchers included.

Real Tests: Malaga dataset

- Robustly estimated trajectories. Vehicle speed retrieved from GPS.

Real Tests: Malaga dataset

- Robustly estimated trajectories. Vehicle speed retrieved from GPS.

Real Tests: Malaga dataset

- Robustly estimated trajectories. Vehicle speed retrieved from GPS.

Real Tests: Malaga dataset

- Robustly estimated trajectories. Vehicle speed retrieved from GPS.

Summary

- A GPU-powered minimal method using only one affine correspondences is presented to estimate the relative motion of a stereo camera pair.
- Constraints for the cameras: images planes has to perpendicular to the ground, vertical translation is zero.
- The proposed approach extends point correspondence-based techniques with linear constraints derived from local affine transformations. The obtained system is linear, it can be rapidly solved.
- Efficient and fast GPU-powered robust algorithms can be easily implemented as only one correspondence is required for model construction.

Corollaries: other benefits of ACs

- As demonstrated, one AC can yields the pose and the focal length for planar motion.
- If extrinsic camera parameters are known, the following properties can be computed from an AC:
- Spatial location by triangulation.
- Surface normal [Barath\&Hajder CVWW2014+VISAPP2015]
- Tangent plane represented by a homographies: [Barath\&Hajder PRL 2016]
- Planes can be segmented [Barath-Matas-Hajder BMVC 2016].
- For these tasks, at least two/three PCs required.
- PC-based methods: Farest the PCs, more accurate the results \rightarrow global method.
- These features can be estimated locally from an AC. \rightarrow local method.
- Local methods can be straightforwardly parallelized. \rightarrow GPU implementation possible.

Thank you for your attention.

Acknowledgement. EFOP-3.6.3-VEKOP-16-2017-00001: Talent Management in Autonomous Vehicle Control Technologies - The Project is supported by the Hungarian Government and co-financed by the European Social Fund.

