
Planetary Robotics 3D
Viewer

PRo3D

GPU Days | 20190711-12 | THOMAS ORTNER | ortner@vrvis.at | thomasortner.github.io

TSID
Tunnel Surface Inspection

and Documentation

Reconstruction
3D

Surfaces

https://www.dibit.at/dienstleistungen/tunnelbau/tunnelscanning/

Images /
Laser Scans

TSID

PRo3D

Visualization
Prototype

Short Time
to Market

Low
Budget

HiRISE
(orbiter)

MOLA
(orbiter)

HiRISE
superres

Pancam
(rover)

Pancam
widestereo

…

Handheld
Images

Pointclouds

Triangles
(OPC)

Presentation

Interaction

TSIDPRo3D+8 years in development

R
o

b
ert C

. M
artin

 –
C

lean
 C

o
d

e

maintenance
DEADLOCK

Sources of Complexity

▪Doing complex things

▪Interconnections between
modules

▪3D / UI / logic separation

▪Changing scope

▪Make it work first
optimize later

How to tame Complexity?

Can’t remove inherent complexity

Rumor has it, Functional Programming might be the key

▪Concise

▪Convenient

▪Correctness

▪Concurrency

▪Composability*

https://fsharpforfunandprofit.com/why-use-fsharp/ https://live.staticflickr.com/2307/32063430274_bf8da24b81_b.jpg

Functional Rewrite!

▪Two applications – 8+ years in development

▪Moving from C# OOP WPF to F# FP ?GUI?

▪Functional paradigm of Immutable Data
//mutable
public static void Add(Dictionary<string,int> d, string key, int value)

//immutable
public static Map<string,int> Add(Map<string,int> m, string key, int value)

Immutable data feasible for a whole Application?
public static Scene AddObject(Scene m, string filepath)

public static Scene ChangeCamera(Scene m, Matrix44f view)

ELM Architecture

Action

update

Model

view

user

type Polygon = { points : list<V2d> }

type Model =
{

polygon : Polygon
cursor : option<V2d>

}

type Message =
| AddPoint of V2d
| MoveCursor of V2d

let update (m : Model) (msg : Message) =
match msg with
| AddPoint pt ->

{ m with polygon = { points = pt :: p.points } }
| MoveCursor v ->

{ m with cursor = Some v } // set the current cursor

let view (m : Model) =
let viewPolygon points =
points |> pairwise |> List.map (

fun (p0,p1) -> line p0 p1 [style "stroke:rgb(0,0,0);"])

body [] [
button [onClick Undo] [text "Undo"]
span [] []
button [onClick Redo] [text "Redo"]
br []
viewPolygon m.polygon.points
br []

]

type Model =
{

polygon : option<Polygon>
cursor : option<V2d>
past : option<Model>
future : option<Model>

}

let update (m : Model) (msg : Message) =
match msg with
| AddPoint pt ->

{ m with polygon = { points = pt :: p.points}; past = Some m }
| Undo _ ->

match m.past with
| None -> m // no past => nothing to undo
| Some p -> { p with future = Some m }

// puts the current model into the future of the new model

type Message =
| AddPoint of V2d
| MoveCursor of V2d
| Undo
| Redo

Composition Action

user

Model

Drawing.Model

update

Drawing.update

view

Drawing.view

Drawing.Action

type Model = {
scene : Scene
drawing : Drawing.Model
// ..about 20 other things

past : option<Model>
future : option<Model>

}

let update (surf:Surface) (m:Model) (msg:Message) =
match msg with
| DrawAnnotation inner ->

let drawing = Drawing.update m.drawing inner
{ m with drawing = drawing }

// … a lot of stuff

Have we tamed complexity?

YES

NO

What about efficiency?

Performance and Efficiency

How can we deal with expensive visualization functions?

State s0 State s1

update Diff(s0, s1) = Δ Visualize
Δ

For 3D graphics: Functional programming vs high-performance
computer graphics, GPU Day 2018

Revisit of our 5Cs

▪Concise
less coding noise, fewer LOC, ‘reasonable’ code

▪Convenient
type system, pattern matching, higher order functions

▪Correctness
compile time errors instead of runtime error,
no null, no side effects

▪Concurrency
event handling, sharing immutable states

▪Composability
maintainable, testable, reusable modules

Take Home

(1) Don’t fear the rewrite, it pays of shortly

(2) Team
▪ Increased motivation
▪Steep learning curve (esp. for OOP trained)

(3) Don’t throw away and port tested code (rather wrap)

Take Home

(4) FP fits high performance applications (if done right)
▪Use diffing algorithm to translate immutable

snapshots to efficient GPU updates

(5) F# plays well with others
▪ .NET runtime / C++ marshalling
▪GPU / compute shader

(6) Functional Programming can tame complexity !!!

Planetary
Robotics 3D Viewer

Live Demo PRo3D

http://pro3d.space/

http://pro3d.space/

Further Reading

▪ “Elm: Concurrent FRP for functional GUIs”, Phd thesis 2012, Evan Czaplick
https://elm-lang.org/assets/papers/concurrent-frp.pdf

▪ Elm diffing algorithm, https://github.com/elm/virtual-dom

▪ Aardvark platform, https://aardvark.graphics

▪ Aardvark’s high-performance ELM implementation
https://github.com/aardvark-platform/aardvark.media

▪ Functional programming in the wild GPU Day 2018

▪ Functional programming vs high-performance computer graphics,
GPU Day 2018

▪ Domain driven design https://fsharpforfunandprofit.com/ddd/

▪ PRo3D project page, http://pro3d.space/

▪ Will be open sourced soon...

https://elm-lang.org/assets/papers/concurrent-frp.pdf
https://github.com/elm/virtual-dom
https://aardvark.graphics/
https://github.com/aardvark-platform/aardvark.media
https://www.youtube.com/watch?v=vIqdSngwHFQ&t=8s
https://www.youtube.com/watch?v=9XkE0_4HoOc&t=37s
https://fsharpforfunandprofit.com/ddd/
http://pro3d.space/

Call for collaboration

▪ VRVis Research Center
▪ Visualization research in various fields
▪ https://www.vrvis.at/

▪ aardworx
▪ Commercial HPG
▪ https://aardworx.com/

explore, measure, analyze 3D data in 3D

Big (laser scan) points in browser

Remote (volume)
rendering
cloud services

● products and services from research
● Functional programming consulting & advice

Solving the performance problem

▪Computing difference is the key!

▪Elm, React uses this approach

▪For 3D graphics: Functional programming vs high-
performance computer graphics, GPU Day 2018

▪Ongoing work: scientific paper on this topic

Functional rewrite timeline

October 2016,
First ELM for 3D sketch

Feb 2017,
Feasibility analysis

March 2017,
First High-Performance
ELM implementation

October 2017,
First PRo3D
features
completed

Mid 2018,
FP rewrite
started paying off

