T1S5ID

Planetary Robotics 3D Tunnel Surface Inspection
Viewer and Documentation

L) . . . L)
VI VvVis GPU Days | 20190711-12 | THOMAS ORTNER | ortner@vrvis.at | thomasortner.github.io VI VIS

JOANNEUM \
RESEARCH)

Images /
Laser Scans Reconstruction

https.//www.dibit. at/dienst/eistungen/tunne/bautunne/scanning/

a

Visualization Short Time Low
Prototype to Market Budget

Mars

Bearing: 338,00 deg

Pitch: -43,50 deg

Position: [3377934.70, -324461.59, -122939.84]
Longitude:5,49 deg

Latitude: -2,10 deg

Altitude: -455,63 m

MOLA
HiRISE (orbiter) |
(orbite ,

Handheld
Images

HIRISE
superres

Pancam
(rover)

Pancam

widestereo Triangles

(OPC)

Earth
W
1tch: -13,32 deg o >
Position: [-1775686.99, -4676580.70, 3945818.50
Longitude:249,21 deg
Latitude: 38,45 deg
Altitude: 1351,09 m

I5resentation

|7 Interaction “ESVSS

+8 years in development

=
.
5
I
@)
®
Q
=
0O
o)
Q
)

4
Time

Figure 1-1
Productivity vs. time

Sources of Complexity

Doing complex things

Interconnections between
modules

3
C

D / Ul / logic separation

nanging scope

Make it work first
optimize later

How to tame Complexity?

Can’t remove inherent complexity

Rumor has it, Functional Programming might be the key
Concise
Convenient
Correctness
Concurrency
Composability*

https://fsharpforfunandprofit.com/why-use-fsharp/ https://live.staticflickr.com/2307/32063430274_bf8da24b81_b.jpg

Functional Rewrite!

Two applications — 8+ years in development
Moving from C# OOP WPF to F# FP ?GUI?
Functional paradigm of Immutable Data

//mutable
public static void Add(Dictionary<string,int> d, string key, int value)

//immutable
public static Map<string,int> Add(Map<string,int> m, string key, int value)

Immutable data feasible for a whole Application?
public static Scene AddObject(Scene m, string filepath)

public static Scene ChangeCamera(Scene m, Matrix44f view)

ELM Architecture

type Polygon = { points : list<V2d> }

type Model =

{
polygon : Polygon
cursor : option<V2d>

}

type Message =
| AddPoint of Vv2d
| MoveCursor of v2d

let update (m : Model) (msg : Message) =
match msg with
| AddPoint pt ->
{ m with polygon = { points = pt :: p.points } }
| MoveCursor v ->
{ m with cursor = Some v } // set the current cursor

let view (m : Model) =
let viewPolygon points =
points |> pairwise |> List.map (
fun (po,pl) -> line p@ pl [style "stroke:rgh(0,0,0);"])

body [] [
button [onClick Undo] [text "Undo"]
span [] []
button [onClick Redo] [text "Redo"]
br []
viewPolygon m.polygon.points
br []

type Model = type Message =

{ AddPoint of Vv2d
polygon : option<Polygon> MoveCursor of V2d
cursor : option<V2d> Undo
past : option<Model> Redo
future : option<Model>

}

let update (m : Model) (msg : Message) =
match msg with
AddPoint pt ->
{ m with polygon = { points = pt :: p.points}; past = Some m }
Undo ->

match m.past with
| None -> m // no past => nothing to undo
| Some p -> { p with future = Some m }
// puts the current model into the future of the new model

Drawing.update

Action
Drawing.Action

Drawing.Model Compos|t|on

Drawing.view

type Model = {
scene : Scene
drawing : Drawing.Model
// ..about 20 other things

past : option<Model>
future : option<Model>

¥

let update (surf:Surface) (m:Model) (msg:Message) =
match msg with
| DrawAnnotation inner ->
let drawing = Drawing.update m.drawing inner
{ m with drawing = drawing }

// .. a lot of stuff

Have we tamed complexity?

What about efficiency?

Performance and Efficiency

How can we deal with expensive visualization functions?

update Diff(sy, S1) = A Visualize
State s, State s, A

For 3D graphics: Functional programming vs high-performance
computer graphics, GPU Day 2018

Revisit of our 5Cs

Concise
less coding noise, fewer LOC, ‘reasonable’ code

Convenient
type system, pattern matching, higher order functions

Correctness
compile time errors instead of runtime error,
no null, no side effects

Concurrency
event handling, sharing immutable states

Composability
maintainable, testable, reusable modules

Take Home

(1) Don’t fear the rewrite, it pays of shortly

(2) Team
Increased motivation
Steep learning curve (esp. for OOP trained)

(3) Don’t throw away and port tested code (rather wrap)

Take Home

(4) FP fits high performance applications (if done right)

Use diffing algorithm to translate immutable
snapshots to efficient GPU updates

(5) F# plays well with others
NET runtime / C++ marshalling
GPU / compute shader

(6) Functional Programming can tame complexity !!!

Live Demo PRo3D

Planetary
Robotics 3D Viewer

nttp://pro3d.space/

http://pro3d.space/

Further Reading

“Elm: Concurrent FRP for functional GUIs”, Phd thesis 2012, Evan Czaplick
https://elm-lang.org/assets/papers/concurrent-frp.pdf

Elm difﬂng algorithm, https://github.com/elm/virtual-dom

Aardvark platform, https://aardvark.graphics

Aardvark’s high-performance ELM implementation
https://github.com/aardvark-platform/aardvark.media

Functional programming in the wild cpu pay 2018

Functional programming vs high-performance computer graphics,
GPU Day 2018

Domain driven deSign https://fsharpforfunandprofit.com/ddd/
PRo3D prOJECt PAgE, http://pro3d.space/
Will be open sourced soon...

https://elm-lang.org/assets/papers/concurrent-frp.pdf
https://github.com/elm/virtual-dom
https://aardvark.graphics/
https://github.com/aardvark-platform/aardvark.media
https://www.youtube.com/watch?v=vIqdSngwHFQ&t=8s
https://www.youtube.com/watch?v=9XkE0_4HoOc&t=37s
https://fsharpforfunandprofit.com/ddd/
http://pro3d.space/

Call for collaboration

=
~— P

VI Vvis

VRVis Research Center |
Visualization research in various fields
https://www.vrvis.at/

(
)IQ\, aardworx

aardworx
Commercial HPG
https://aardworx.comy

Remote (volume)
rendering
cloud services

explore, measure, analyze 3D data in 3D

V¢
ﬁ aardworx

« products and services from research SR oo
« Functional programming consulting & advice S———

Big (Iasr scan) points in browser

Solving the performance problem

Computing difference is the key!

Elm, React uses this approach

For 3D graphics: Functional programming vs high-
performance computer graphics, cpupay 2018

Ongoing work: scientific paper on this topic

Functional rewrite timeline

Feb 2017, October 2017,
Feasibility analysis First PRo3D
features Mid 2018,
March 2017, completed EP rewrite

October 2016,

First High-Performance
First ELM for 3D sketch

, _ started paying off
ELM implementation

