
GPU TESTING: PAST,

PRESENT AND FUTURE

(IN VULKAN)

Ádám István Szűcs

ELTE Faculty of Informatics

Department of Computer Algebra

July 12, 2019

EFOP-3.6.3-VEKOP-16-2017-00001

• Algorithm implemented in

“shader” language

• Execution of shaders, data

management implemented with

API calls (mostly we have these

API calls wrapped in C++ env.

e.g.: UE4)

• There are no direct techniques

to assure quality early in the

development cycle that contain

rendering and compute on

GPUs

GPU DEVELOPMENT

PIPELINE

• For real-time rendering we have

only 16-33ms per frame,

imagine modern VR

[Elizabeth15]

• CPU and GPU work together

• The GPU is powerful, but not all

powerful

• GPUs act differently than CPUs

and can be “mysterious”

GRAPHICS AND COMPUTE

COMMON GRAPHICS

PROBLEMS

• Blank screen or things not

drawing at all

• Corruption

• Flickering

• “Shader” bugs? [Alastair17]

• Slowness

PROBLEMS WITH GPU

DEVELOPMENT

⚫ GPU code execution goes
through a driver

⚫ Programming model needs to be
changed when writing host code

⚫ There are no techniques to
assure quality for algorithms that
contain rendering and compute
on GPUs

⚫ If something goes wrong only
post-mortem analysis is possible
with current tooling for
X-{Platform,Device} development
RenderDoc, RGA, RGP

⚫ Compiler manifold: Microsoft
DXC, GlSlang, XShaderCompiler
http://shader-
playground.timjones.io/

STANDARDIZED

INTERMEDIATE

REPRESENTATION

⚫ Khronos Group Inc. has brought
many technologies to life
including the APIs such as
OpenGL, OpenCL and Vulkan

⚫ After creating many of these
technologies for GPU
development they have taken the
effort in standardizing the
intermediate languague for all
these graphical processing unit
APIs

⚫ As a result SPIRV was created
which is

⚫Portable across vendors,
architectures, platforms

⚫Can be used as an
intermediate step between
high-level and assembly

INITIAL DRAWBACKS

⚫ However tool for SPIRV called
SPIRV-X@Hans-Kristian has
experimental C++ code
generation it

⚫Sometimes can create
incorrect code

⚫Doesn’t integrate well with
type systems by default

⚫Doesn’t help with API call
generation

⚫Doesn’t help with resource
management

SOLUTION

⚫ Extend SPIRV-X to generate
necessary types

⚫ OOP the generated code ->
inject into type system

⚫ Maintain modularity

⚫ Implement high-level resources
for the RHI

⚫ Result: Automatically testable
equivalent C++ code

SOLUTION – FRAME

GRAPHS

⚫ During converting the shaders,
we can gather information of the
resources used by the GPU
program

⚫ Combining the resources we can
generate and combine high level
knowledge of a frame, temporary
result during the algorithms
pipeline [Yuri17]

⚫ Resulting in

⚫Simplified resource
management

⚫Simplified rendering/compute
pipeline configuration

⚫Simplified async compute
and resource barriers

⚫Self contained and modular
pipelines

• Running RT code on real-life

scenes would drive us to the

field of Disney/Pixar sized

render farms

• Moving to a software renderer

does not help for small

studios/firms

• Testing shall be moved up to

the hardware

• Shall be as fast as possible

RT RAY TRACING IS HERE

FUTURE

⚫ Converting all the shaders can
be a time-consuming job even in
a distributed automated
environment

⚫ All the upcoming features need
to be supported including
extensions
(>150 extensions already in
Vulkan)

⚫ Could be a viable solution to
move all the implementation
closer to the driver[RADV]

⚫Only on Nix and AMD
hardware

⚫What about Nvidia?

⚫Need GPU vendor
collaboration

• Solution will be hard to implement in
drivers, needs x-vendor
collaborations, hard-to maintain and
to keep control

• Try to do a round trip based on GPU
Assisted Validation layers
[Lunarg19]

• Can be challenging to implement a
Validation Layer

• LunarG Validation Layer Factory to
the rescue!

• Mixed with VK_EXT_DEBUG_UTILS

• Save assertion results into buffer in
shader

• Sizing becomes a question (multiple
terabytes of data is generated on the
fly)

• vkAssert(…) needs to be exposed by
the API as well

• Need to “patch” the shaders under
test

• Can be challenging in large systems
with material systems and
permutation

• SPIRV Optimizer

FUTURE

QUESTIONS

This work was supported in part by Advanced Micro Devices Radeon Technologies
Group. Information on the

Radeon Technologies Group can be obtained from

https://radeon.com/. This research was also supported by

Zeno Vision Limited and ELTE EIT Digital and by the European Union, co-financed
by the European Social Fund

(EFOP-3.6.3-VEKOP-16-2017-00001)

REFERENCES

[Elizabeth15] Tightening Up the Graphics: Tools and Techniques for Debugging and Optimization,
BostonFIG Talk 2015

[Alastair17] Automated Testing of Graphics Shader Compilers,
Proceedings of the ACM Programming Languages 2017

[SPIRV] Standard Portable Intermediate Representation,
https://www.khronos.org/spir/

[Yuri17] FrameGraph: Extensible Rendering Architecture in Frostbite,
Game Developers Conference 2017

[RADV] Radeon Vulkan driver "RADV“,
https://github.com/airlied/mesa/tree/semi-interesting/src/amd/vulkan

[Lunarg19] Vulkan GPU-Assisted Validation

https://www.lunarg.com/wp-content/uploads/2019/06/GPU-Assisted-Validation-Phase-2_final.pdf

https://www.khronos.org/spir/
https://github.com/airlied/mesa/tree/semi-interesting/src/amd/vulkan

THANK YOU

FOR YOUR

ATTENTION!

