

Light-Field 3D Videoconferencing

Aron Cserkaszky GPU day

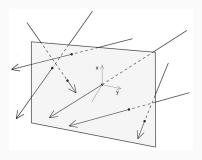
cserkaszky.aron@itk.ppke.hu aron.cserkaszky@gmail.com

Outline

- 1. Videoconferencing and light-fields
- 2. Light-field 3D displays
- 3. Capturing light-fields with cameras
- 4. Light-field conversion
- 5. The prototype system
- 6. Discussion

Videoconferencing and light-fields

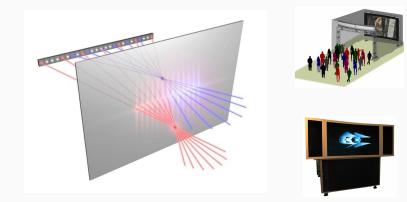
2D Videoconferencing is nothing new


2005, Skype 1959, Moon landings on TV 1936, Reich Postzentralamt 1920, Bell Labs

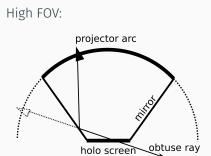
Concept art for 2000 (1910)

capture \rightarrow compression \rightarrow transmission \rightarrow decode \rightarrow display

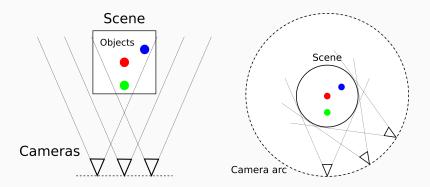
What is the Light-field (LF)


"The light-field is a vector function that describes the amount of light flowing in every direction through every point in space."

4D ray space Basically a window of light.


Light-field 3D displays

Horizontal parallax for now



Human sized display

Capturing light-fields with cameras

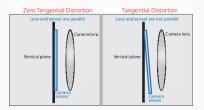
How to capture light-field?

http://mitchmartinez.com/bullettime/

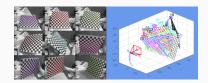
Camera arrays

- Image stream from all cameras
- Parameters as metadata
- Bad sampling of LF
- Calibration difficulties

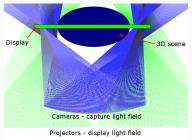
Calibrated parameters


- Positions
- Directions
- Field-of-view
- Distortions
- Color

Camera distortions



Camera selection criteria

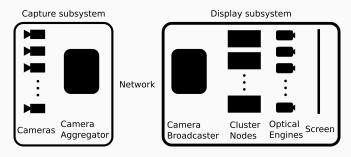

- small size, dense :), bad quality :(
- <1000Eur, still bad quality :(
- GigE, not USB :)

Light-field conversion

Matching capture to display light-field

4D interpolation:

- Preprocessed look-up-table
- Depth aware interpolation?


Issues:

- Depth sensor arc?
- Lower resolution
- Temporal flickering
- Edge uncertainties

Even blur is better :(

The prototype system

The schematic of the system

Cameras:

- 96 cameras, 1280 x 1080
- 2.7m distance, 120° arc
- no compression

Display:

- 100megaray display
- almost 180° FOV
- 100ms latency on LAN

Input: camera images Output: individually or jointly compressed streams 30-40ms latency for individual x264 With enough GPUs on both sides!

- NVidia: NVDEC, NVENC
- Intel: Quick Sync
- AMD: VCE

Joint compression is not realtime

Demonstration I - also video

Demonstration II

Hologram Conference Room exhibition in Seoul Discussion

- Different display technology
- Camera arc above display
- Gaze correction?
- View synthesis?
- LF interpolation

Reality check: adoption issues (wikipedia)

- Eye contact
- Appearance consciousness
- Signal latency
- Bandwidth and quality of service
- Complexity of systems
- Perceived lack of interoperability
- Expense of commercial systems

The work in this presentation was funded from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 676401, European Training Network on Full Parallax Imaging.