Incentivizing Exploration in Curiosity-driven Deep Reinforcement Learning

Author: Reizinger Patrik

Supervisor: Márton Szemenyei

Basic model

Benchmarks & challenges

- Exploitation: use the current best
- Exploration: try to discover better options
- Sparse rewards

Advantage Actor Critic (A2C)

- Actor: learns the optimal policy
- Critic: learns the state value function
- Advantage: improves result with learning relative change

Introducing curiosity (ICM)

Disagreement-based curiosity

Enforcing exploration in feature space

- Idea: similar as learning rate scheduling
- Decaying weight of incentivizing bad predictions (like epsilon-greedy policy)

Focusing with Attention

- Self-induced deadlock: TV with remore control
- Expectation: Attention helps leaving the deadlock

Experiments

- 1 Titan X GPU
- More than 1 day is needed for each training process
- Currently extrinsic reward is also used
- Deterministic&stochastic (i.e. action repeat) were considered

Results - rewards

ICM

ICM+exploration enforcement

Results – features

ICM

ICM+exploration enforcement

Conclusion

- Bigger spread of the features
- Evaluation without extrinsic reward needed
- Attention: action and feature space can be treated separately

Incentivizing Exploration in Curiosity-driven Deep Reinforcement Learning

Author: Reizinger Patrik

Supervisor: Márton Szemenyei

