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Basic model
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Benchmarks & challenges
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• Exploitation: use the current best
• Exploration: try to discover better 

options
• Sparse rewards



Advantage Actor Critic (A2C)
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• Actor: learns the optimal policy
• Critic: learns the state value function
• Advantage: improves result with 

learning relative change
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Action



Introducing curiosity (ICM)
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Disagreement-based curiosity
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Enforcing exploration in feature space
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• Idea: similar as learning rate sched-
uling

• Decaying weight of incentivizing bad 
predictions (like epsilon-greedy pol-
icy)



Focusing with Attention
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StatesActions

• Self-induced deadlock: TV with re-
more control

• Expectation: Attention helps leaving 
the deadlock



Experiments
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• 1 Titan X GPU
• More than 1 day is needed for each training process
• Currently extrinsic reward is also used
• Deterministic&stochastic (i.e. action repeat) were con-

sidered



Results - rewards

ICM ICM+exploration enforcement
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Results - features

ICM ICM+exploration enforcement
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Conclusion

• Bigger spread of the features
• Evaluation without extrinsic reward needed
• Attention: action and feature space can be treated sep-

arately
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https://github.com/rpatrik96
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