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The Kuramoto Model

describes a network of coupled oscillators

system of ordinary differential equations (ODEs)

∂φj(t)

∂t
= ωj +

∑
k 6=j

λjk · sin
[
φk(t)− φj(t)

]
⇒ integration to study time-evolution
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Using things that already exist

boost::numeric::odeint odeint.com
template library of ODE solvers
boost::numeric supports various vector backends for accelerators:
e.g. Thust (CUDA), VexCL (CUDA/OpenCL)

VexCL
library for offloading vector expressions via CUDA or OpenCL
direct support for custom kernels

we use 4th order Runge-Kutta form odeint

⇒ computing derivates reamins and is the most time-consuming part
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VexCL

+ offloading vector expressions, which is what boost::compute
relies on

1 std::vector<double> host(N, 2);
2 vex::vector<double> device(context, host);
3

4 device *= device;
5

6 vex::copy(device, host);

− pseudo single-source: kernel compilation at runtime

− no custon function templates

⇒ have to use custom kernel and inject string to get “template”
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Shape of the Network I

∂φj(t)

∂t
= ωj +

∑
k 6=j

λjk · sin
[
φk(t)− φj(t)

]
parallel implementations depend on network topology

fully connected graph:
N2-problem, vectorizable

regular lattice / band matrix:
stencil integration
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Shape of the Network II

∂φj(t)

∂t
= ωj +

∑
k NN of j

λjk · sin
[
φk(t)− φj(t)

]
sparse, random graph

requires explicit storage network topology
i.e. sparse representation, neighbor lists
random neighbor sums

⇒ techniques for SIMT vectorization by tuned operation and
memory ordering
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Implementation
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Recap: GPU Architecture

Grid

Block (1, 1)

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0)

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1)

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2)

Block (2, 1)Block (1, 1)Block (0, 1)

Block (2, 0)Block (1, 0)Block (0, 0)

Single-Instruction-Multiple-
Thread (SIMT) workers in
lock-step

vector memory transactions
(> 64 byte)

actually, the same goes for
CPU (SIMD + Cache-lines)
GPUs just have wider vectors
and more simultaneous multi
threading (SMT)
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Vectorization I

∂φj(t)

∂t
= ωj +

∑
k NN of j

λjk · sin
[
φk(t)− φj(t)

]
vectorizing over oscillators j

sum over k too short on average (. 51),
too little parallelism
avoid need for reduction
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Vectorization II: Memory Locality

∂φj(t)

∂t
= ωj +

∑
k NN of j

λjk · sin
[
φk(t)− φj(t)

]
data local to js is continuous

data in naive neighbor lists would lead to scattered memory access

data of remote site k is at random positions

+ no branches, vectorizable expression

− no predictable data reuse within thread block:
shared memory of not useful, but caches may be

− low computational density, mostly streaming data

⇒ maximize memory locality of reads

⇒ minimize load imbalances
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Memory Layout
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Networks
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Benchmarks
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Efficiency

∂φj(t)

∂t
= ωj +

∑
k NN of j

λjk · sin
[
φk(t)− φj(t)

]
profile on tesla P100

global load efficiency: ∼ 47%
saturating gross load bandwidth to ∼ 70%
data requests dominant stall reason ∼ 50%

⇒ remains memory-latency bound, due to random accesses to
neighbors
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Summary

efficient inmplementation for integration on random graphs
∼ 20× improved throughput over single CPU socket.

easily adaptable to other models: we use it for 2nd order
Kuramoto, too

handle randomness on GPU by sorting data to maximise the
likelyhood of efficient memory acceess and load balance
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