
Solving the Kuramoto Oscillator Model on
Random Graphs

Jeffrey Kelling,
Géza Ódor, Sibylle Gemming

12th July 2019

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz Association

Where am I from?

outside of Dresden, Germany

Jürgen-M. Schulter http://dresden-luftfoto.de

about me:

member of computational
science group

background in statistical and
theoretical solid state physics

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 1/20

http://dresden-luftfoto.de

Content

1 Introduction

2 Implementation

3 Performance

4 Conclusion

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 2/20

Introduction

1 Introduction

2 Implementation

3 Performance

4 Conclusion

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 3/20

The Kuramoto Model

describes a network of coupled oscillators

system of ordinary differential equations (ODEs)

∂φj(t)

∂t
= ωj +

∑
k 6=j

λjk · sin
[
φk(t)− φj(t)

]
⇒ integration to study time-evolution

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 4/20

Using things that already exist

boost::numeric::odeint odeint.com
template library of ODE solvers
boost::numeric supports various vector backends for accelerators:
e.g. Thust (CUDA), VexCL (CUDA/OpenCL)

VexCL
library for offloading vector expressions via CUDA or OpenCL
direct support for custom kernels

we use 4th order Runge-Kutta form odeint

⇒ computing derivates reamins and is the most time-consuming part

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 5/20

https:://odeint.com
https://developer.nvidia.com/thrust
https://github.com/ddemidov/vexcl

Using things that already exist

boost::numeric::odeint odeint.com
template library of ODE solvers
boost::numeric supports various vector backends for accelerators:
e.g. Thust (CUDA), VexCL (CUDA/OpenCL)

VexCL
library for offloading vector expressions via CUDA or OpenCL
direct support for custom kernels

we use 4th order Runge-Kutta form odeint

⇒ computing derivates reamins and is the most time-consuming part

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 5/20

https:://odeint.com
https://developer.nvidia.com/thrust
https://github.com/ddemidov/vexcl

Using things that already exist

boost::numeric::odeint odeint.com
template library of ODE solvers
boost::numeric supports various vector backends for accelerators:
e.g. Thust (CUDA), VexCL (CUDA/OpenCL)

VexCL
library for offloading vector expressions via CUDA or OpenCL
direct support for custom kernels

we use 4th order Runge-Kutta form odeint

⇒ computing derivates reamins and is the most time-consuming part

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 5/20

https:://odeint.com
https://developer.nvidia.com/thrust
https://github.com/ddemidov/vexcl

VexCL

+ offloading vector expressions, which is what boost::compute
relies on

1 std::vector<double> host(N, 2);
2 vex::vector<double> device(context, host);
3

4 device *= device;
5

6 vex::copy(device, host);

− pseudo single-source: kernel compilation at runtime

− no custon function templates

⇒ have to use custom kernel and inject string to get “template”

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 6/20

VexCL

+ offloading vector expressions, which is what boost::compute
relies on

1 std::vector<double> host(N, 2);
2 vex::vector<double> device(context, host);
3

4 device *= device;
5

6 vex::copy(device, host);

− pseudo single-source: kernel compilation at runtime

− no custon function templates

⇒ have to use custom kernel and inject string to get “template”

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 6/20

Shape of the Network I

∂φj(t)

∂t
= ωj +

∑
k 6=j

λjk · sin
[
φk(t)− φj(t)

]
parallel implementations depend on network topology

fully connected graph:
N2-problem, vectorizable

regular lattice / band matrix:
stencil integration

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 7/20

Shape of the Network I

∂φj(t)

∂t
= ωj +

∑
k 6=j

λjk · sin
[
φk(t)− φj(t)

]
parallel implementations depend on network topology
fully connected graph:

N2-problem, vectorizable

regular lattice / band matrix:
stencil integration

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 7/20

Shape of the Network I

∂φj(t)

∂t
= ωj +

∑
k 6=j

λjk · sin
[
φk(t)− φj(t)

]
parallel implementations depend on network topology
fully connected graph:

N2-problem, vectorizable

regular lattice / band matrix:
stencil integration

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 7/20

Shape of the Network II

∂φj(t)

∂t
= ωj +

∑
k NN of j

λjk · sin
[
φk(t)− φj(t)

]
sparse, random graph

requires explicit storage network topology
i.e. sparse representation, neighbor lists
random neighbor sums

⇒ techniques for SIMT vectorization by tuned operation and
memory ordering

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 8/20

Shape of the Network II

∂φj(t)

∂t
= ωj +

∑
k NN of j

λjk · sin
[
φk(t)− φj(t)

]
sparse, random graph

requires explicit storage network topology
i.e. sparse representation, neighbor lists
random neighbor sums

⇒ techniques for SIMT vectorization by tuned operation and
memory ordering

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 8/20

Shape of the Network II

∂φj(t)

∂t
= ωj +

∑
k NN of j

λjk · sin
[
φk(t)− φj(t)

]
sparse, random graph

requires explicit storage network topology
i.e. sparse representation, neighbor lists
random neighbor sums

⇒ techniques for SIMT vectorization by tuned operation and
memory ordering

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 8/20

Implementation

1 Introduction

2 Implementation

3 Performance

4 Conclusion

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 9/20

Recap: GPU Architecture

Grid

Block (1, 1)

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0)

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1)

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2)

Block (2, 1)Block (1, 1)Block (0, 1)

Block (2, 0)Block (1, 0)Block (0, 0)

Single-Instruction-Multiple-
Thread (SIMT) workers in
lock-step

vector memory transactions
(> 64 byte)

actually, the same goes for
CPU (SIMD + Cache-lines)
GPUs just have wider vectors
and more simultaneous multi
threading (SMT)

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 10/20

Recap: GPU Architecture

Grid

Block (1, 1)

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0)

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1)

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2)

Block (2, 1)Block (1, 1)Block (0, 1)

Block (2, 0)Block (1, 0)Block (0, 0)

Single-Instruction-Multiple-
Thread (SIMT) workers in
lock-step

vector memory transactions
(> 64 byte)

actually, the same goes for
CPU (SIMD + Cache-lines)
GPUs just have wider vectors
and more simultaneous multi
threading (SMT)

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 10/20

Vectorization I

∂φj(t)

∂t
= ωj +

∑
k NN of j

λjk · sin
[
φk(t)− φj(t)

]
vectorizing over oscillators j

sum over k too short on average (. 51),
too little parallelism
avoid need for reduction

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 11/20

Vectorization II: Memory Locality

∂φj(t)

∂t
= ωj +

∑
k NN of j

λjk · sin
[
φk(t)− φj(t)

]
data local to js is continuous

data in naive neighbor lists would lead to scattered memory access

data of remote site k is at random positions

+ no branches, vectorizable expression

− no predictable data reuse within thread block:
shared memory of not useful, but caches may be

− low computational density, mostly streaming data

⇒ maximize memory locality of reads

⇒ minimize load imbalances

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 12/20

Vectorization II: Memory Locality

∂φj(t)

∂t
= ωj +

∑
k NN of j

λjk · sin
[
φk(t)− φj(t)

]
data local to js is continuous

data in naive neighbor lists would lead to scattered memory access

data of remote site k is at random positions

+ no branches, vectorizable expression

− no predictable data reuse within thread block:
shared memory of not useful, but caches may be

− low computational density, mostly streaming data

⇒ maximize memory locality of reads

⇒ minimize load imbalances

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 12/20

Vectorization II: Memory Locality

∂φj(t)

∂t
= ωj +

∑
k NN of j

λjk · sin
[
φk(t)− φj(t)

]
data local to js is continuous

data in naive neighbor lists would lead to scattered memory access

data of remote site k is at random positions

+ no branches, vectorizable expression

− no predictable data reuse within thread block:
shared memory of not useful, but caches may be

− low computational density, mostly streaming data

⇒ maximize memory locality of reads

⇒ minimize load imbalances

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 12/20

Vectorization II: Memory Locality

∂φj(t)

∂t
= ωj +

∑
k NN of j

λjk · sin
[
φk(t)− φj(t)

]
data local to js is continuous

data in naive neighbor lists would lead to scattered memory access

data of remote site k is at random positions

+ no branches, vectorizable expression

− no predictable data reuse within thread block:
shared memory of not useful, but caches may be

− low computational density, mostly streaming data

⇒ maximize memory locality of reads

⇒ minimize load imbalances

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 12/20

Vectorization II: Memory Locality

∂φj(t)

∂t
= ωj +

∑
k NN of j

λjk · sin
[
φk(t)− φj(t)

]
data local to js is continuous

data in naive neighbor lists would lead to scattered memory access

data of remote site k is at random positions

+ no branches, vectorizable expression

− no predictable data reuse within thread block:
shared memory of not useful, but caches may be

− low computational density, mostly streaming data

⇒ maximize memory locality of reads

⇒ minimize load imbalances

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 12/20

Vectorization II: Memory Locality

∂φj(t)

∂t
= ωj +

∑
k NN of j

λjk · sin
[
φk(t)− φj(t)

]
data local to js is continuous

data in naive neighbor lists would lead to scattered memory access

data of remote site k is at random positions

+ no branches, vectorizable expression

− no predictable data reuse within thread block:
shared memory of not useful, but caches may be

− low computational density, mostly streaming data

⇒ maximize memory locality of reads

⇒ minimize load imbalances

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 12/20

Memory Layout

10

7

5

2

1

...

1st links

2nd links

3rd links

4th links

5th links

array of nth links

0

10

17

22

24

...

#nodes ... with nth links; prefix sum

0 1 2 3 4 5 6 7 8 9j =

∂φj(t)

∂t
= ωj +

∑
k NN of j

λjk · sin
[
φk(t)− φj(t)

]
Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de

Member of the Helmholtz AssociationPage 13/20

Memory Layout

10

7

5

2

1

...

1st links

2nd links

3rd links

4th links

5th links

array of nth links

0

10

17

22

24

...

#nodes ... with nth links; prefix sum

0 1 2 3 4 5 6 7 8 9j =

∂φj(t)

∂t
= ωj +

∑
k NN of j

λjk · sin
[
φk(t)− φj(t)

]
Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de

Member of the Helmholtz AssociationPage 13/20

Memory Layout

10

7

5

2

1

...

1st links

2nd links

3rd links

4th links

5th links

array of nth links

0

10

17

22

24

...

#nodes ... with nth links; prefix sum

0 1 2 3 4 5 6 7 8 9j =

∂φj(t)

∂t
= ωj +

∑
k NN of j

λjk · sin
[
φk(t)− φj(t)

]
Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de

Member of the Helmholtz AssociationPage 13/20

Memory Layout

10

7

5

2

1

...

1st links

2nd links

3rd links

4th links

5th links

array of nth links

0

10

17

22

24

...

#nodes ... with nth links; prefix sum

0 1 2 3 4 5 6 7 8 9j =

∂φj(t)

∂t
= ωj +

∑
k NN of j

λjk · sin
[
φk(t)− φj(t)

]
Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de

Member of the Helmholtz AssociationPage 13/20

Memory Layout

10

7

5

2

1

...

1st links

2nd links

3rd links

4th links

5th links

array of nth links

0

10

17

22

24

...

#nodes ... with nth links; prefix sum

0 1 2 3 4 5 6 7 8 9j =

1st links 2nd links 3rd links 4th 5th

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 13/20

Memory Layout

10

7

5

2

1

...

1st links

2nd links

3rd links

4th links

5th links

array of nth links

0

10

17

22

24

...

#nodes ... with nth links; prefix sum

0 1 2 3 4 5 6 7 8 9j =

1st links 2nd links 3rd links 4th 5th

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 13/20

Performance

1 Introduction

2 Implementation

3 Performance

4 Conclusion

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 14/20

Networks

0 1,000 2,000 3,000
100

101

102

103

104

105

106

number of links per node

nu
m
be
r
of

no
de
s

long-tailed human brain connectome vs. random graph

brain connectome
random graph

804113 nodes,
average degree 51

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 15/20

Benchmarks

Xe
on

Go
ld
61
36

seq
. t
hro

ug
hp
ut
,

so
ck
et

Xe
on

Go
ld
61
36

Op
en
MP

, s
oc
ke
t

GT
X
10
50

Te
sla

P1
00

Te
sla

V1
00

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4

4.4

0
.9
6

4

0
.2
9

0
.0
5
2

0
.0
2
4

1
.7

4

0
.4
1

0
.0
5
3

0
.0
2
1

se
co
nd
s
/
in
te
gr
at
io
n
st
ep

brain connectome
random graph

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 16/20

Efficiency

∂φj(t)

∂t
= ωj +

∑
k NN of j

λjk · sin
[
φk(t)− φj(t)

]
profile on tesla P100

global load efficiency: ∼ 47%
saturating gross load bandwidth to ∼ 70%
data requests dominant stall reason ∼ 50%

⇒ remains memory-latency bound, due to random accesses to
neighbors

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 17/20

Conclusion

1 Introduction

2 Implementation

3 Performance

4 Conclusion

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 18/20

Summary

efficient inmplementation for integration on random graphs
∼ 20× improved throughput over single CPU socket.

easily adaptable to other models: we use it for 2nd order
Kuramoto, too

handle randomness on GPU by sorting data to maximise the
likelyhood of efficient memory acceess and load balance

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 19/20

Summary

efficient inmplementation for integration on random graphs
∼ 20× improved throughput over single CPU socket.

easily adaptable to other models: we use it for 2nd order
Kuramoto, too

handle randomness on GPU by sorting data to maximise the
likelyhood of efficient memory acceess and load balance

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 19/20

Acknowledgments

Thank You.

Jeffrey Kelling, Géza Ódor, Sibylle Gemming | FWCC | http//www.hzdr.de
Member of the Helmholtz AssociationPage 20/20

	Where am I from?
	Content
	Introduction
	The Kuramoto Model
	Using things that already exist
	VexCL
	Shape of the Network I
	Shape of the Network II
	Implementation
	Recap: GPU Architecture
	Vectorization I
	Vectorization II: Memory Locality
	Memory Layout

	Performance
	Networks
	Benchmarks
	Efficiency

	Conclusion
	Summary
	Acknowledgments

