

High-dimensional Hessian metric representation on GPGPUs

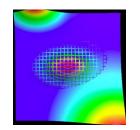
a machine learning example for sparse normalized representations joint works with András Benczúr and Rita Aleksziev

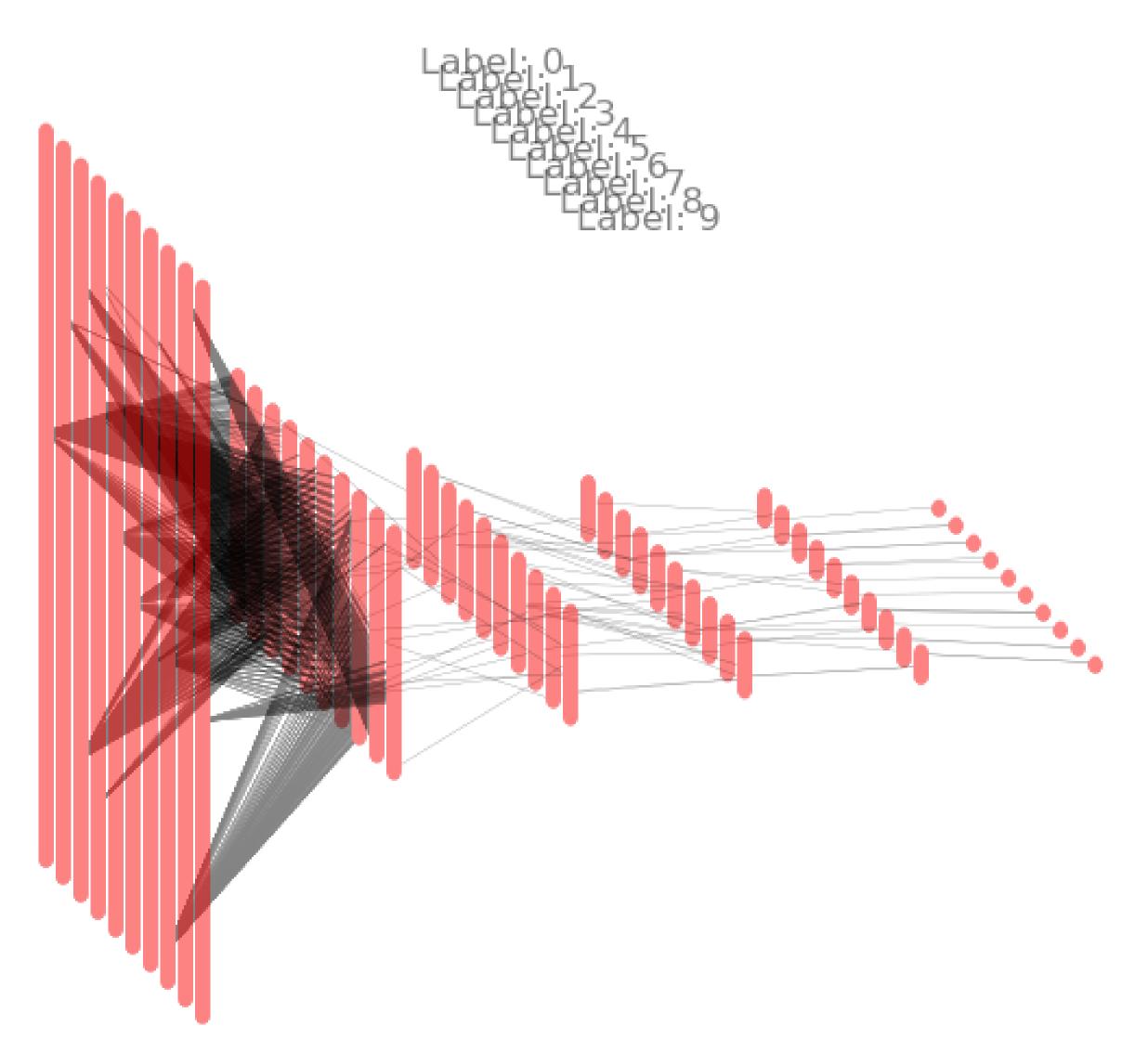
Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI)

> **GPU Day 2019** July 12 2019

Bálint Daróczy

Motivation: gradient structures of feedfoward networks are distinguishable





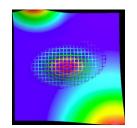
Feed-forward networks:

- DAG with activation functions
- ordered disjoint layers
- usually continuously differentiable
- trainable via back-propagation
- highly non-convex
- there are cases where the local minimums are close to global [Choromanska et al., 2015]

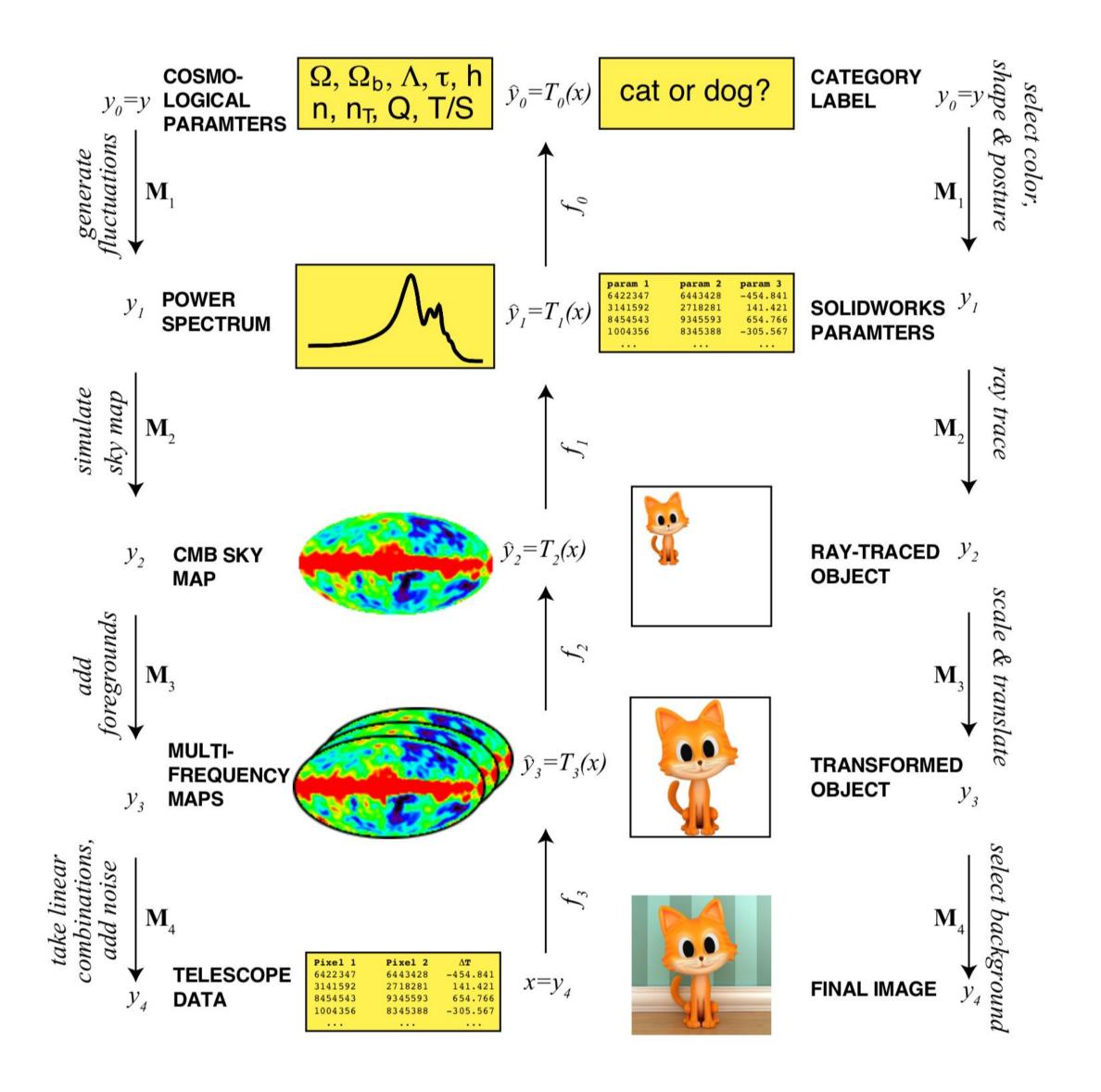
Gradient graph: Nodes: parameters Edges: dependencies

Sparsity?

Example: Multi-layer perceptron with 256-128-64-32-10 neurons for CIFAR10



Motivation: low degree poly structures

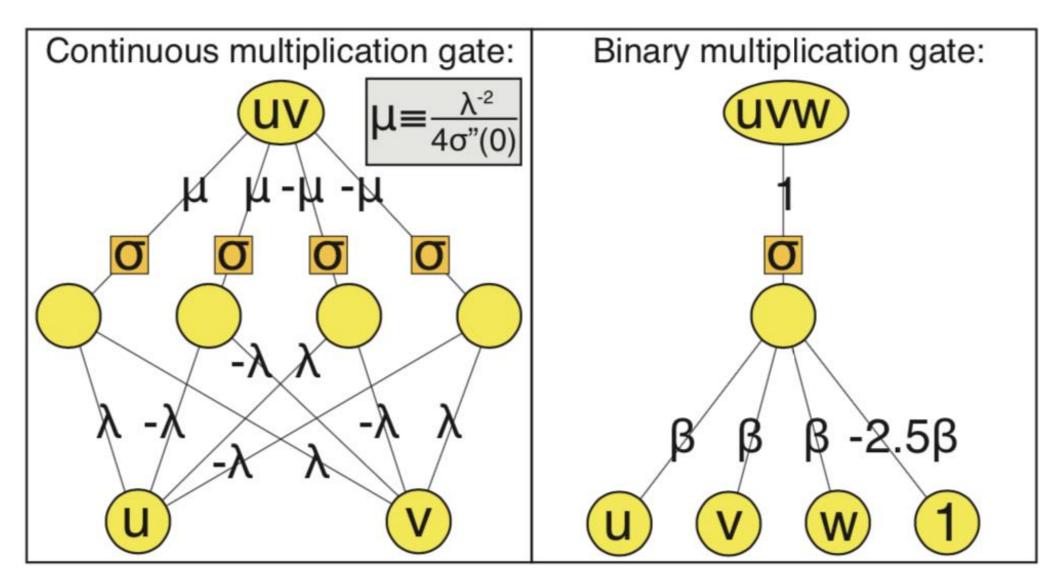


LIN, H. W., AND TEGMARK, M. Why does deep and cheap learning work so well? Journal of Statistical Physics, 2017

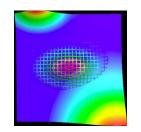
Hamiltonians are D<5 degree polynomials...

Why not poly networks?

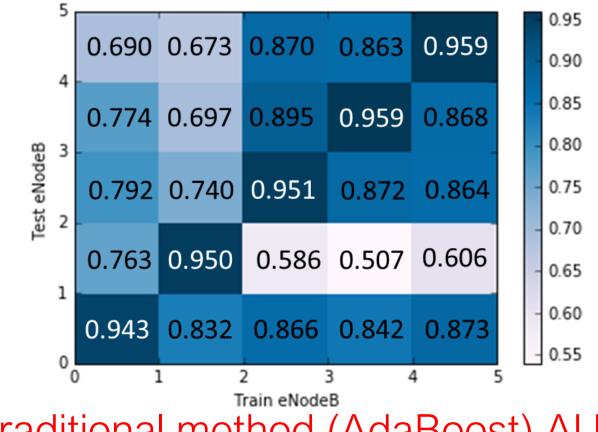
Results indicate that for known hierarchical/compositions functions deep structures can be exponentially better than shallow models.



Motivation: promising results over normalized gradients

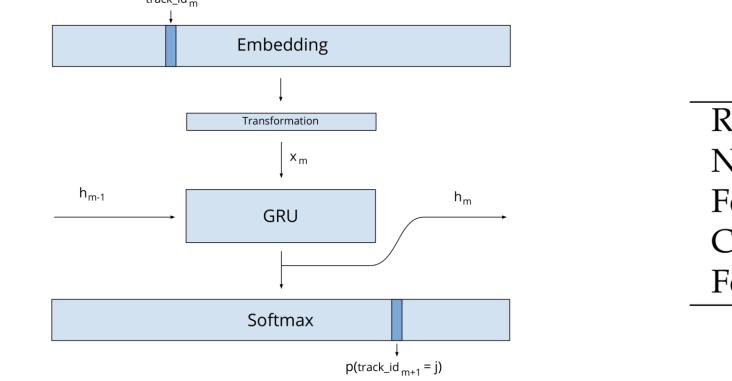


Drop prediction in LTE data connection, transfer learning between eNodeBs¹

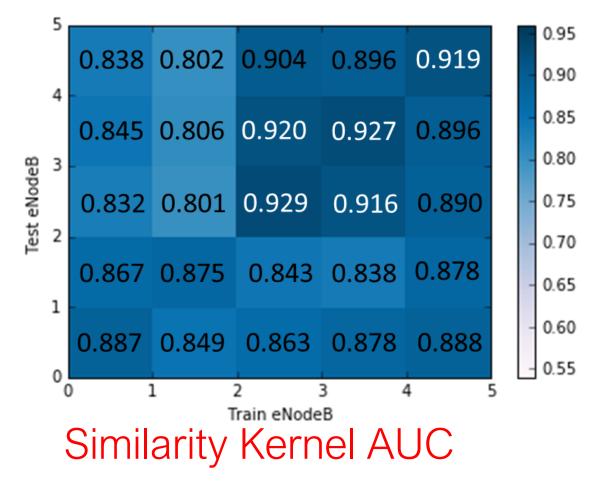


Traditional method (AdaBoost) AUC

Session based recommender via conditional Fisher information normalized gradient embedding²

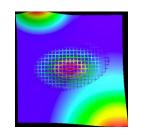


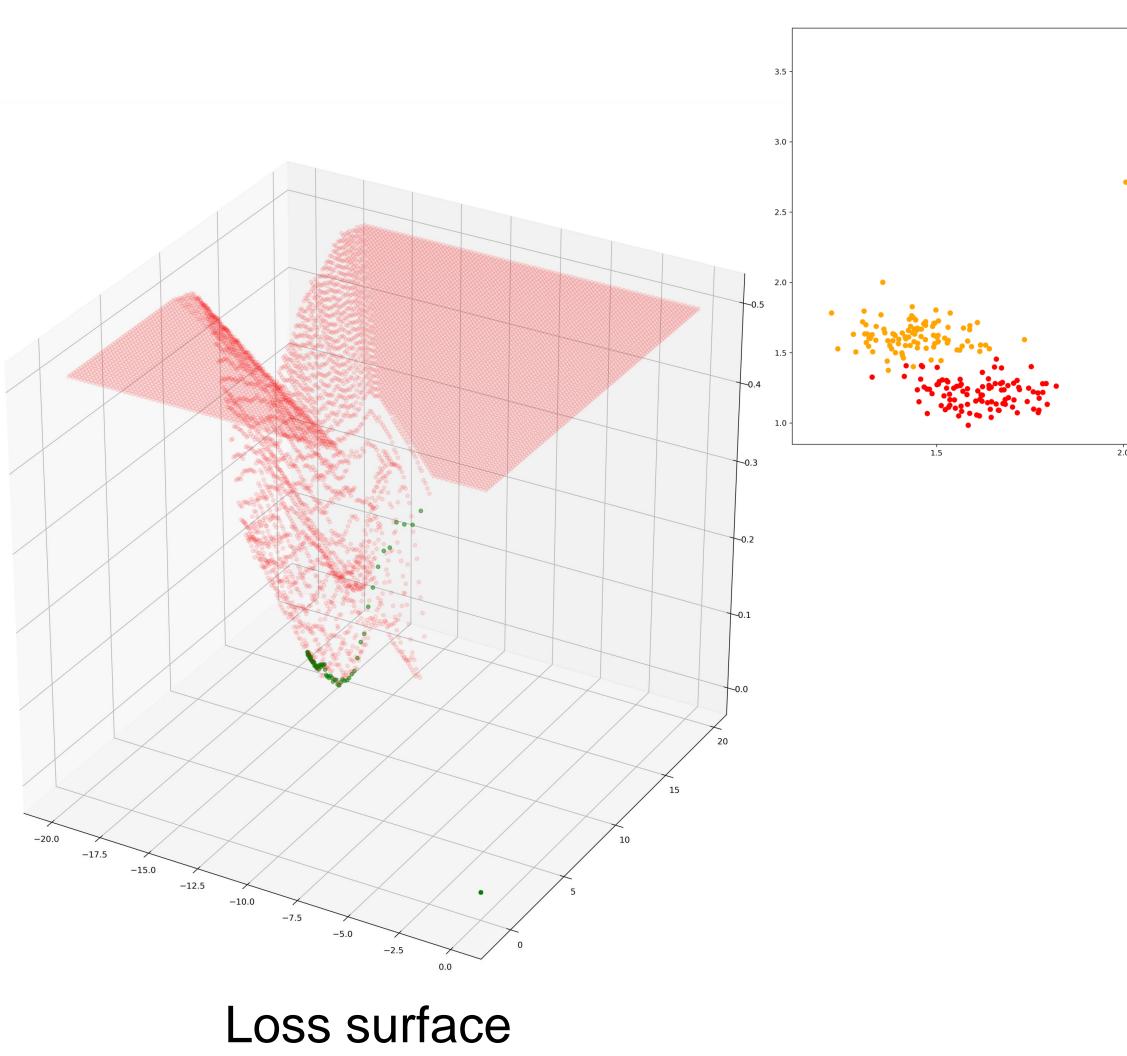
[1] Bálint Daróczy, Péter Vaderna, and András Benczúr: "Machine learning based session drop prediction in Ite networks and its son aspects." In Proceedings of IWSON at IEEE 81st Vehicular Technology Conference VTC'15 Spring, Glasgow, Scotland 2015, 2015. [2] Domokos Kelen, Bálint Daróczy, Frederick Ayala-Gómez, Anna Ország, András Benczúr: "Session Recommendation via Recurrent Neural Networks over Fisher Embedding Vectors", Sensors, under revision

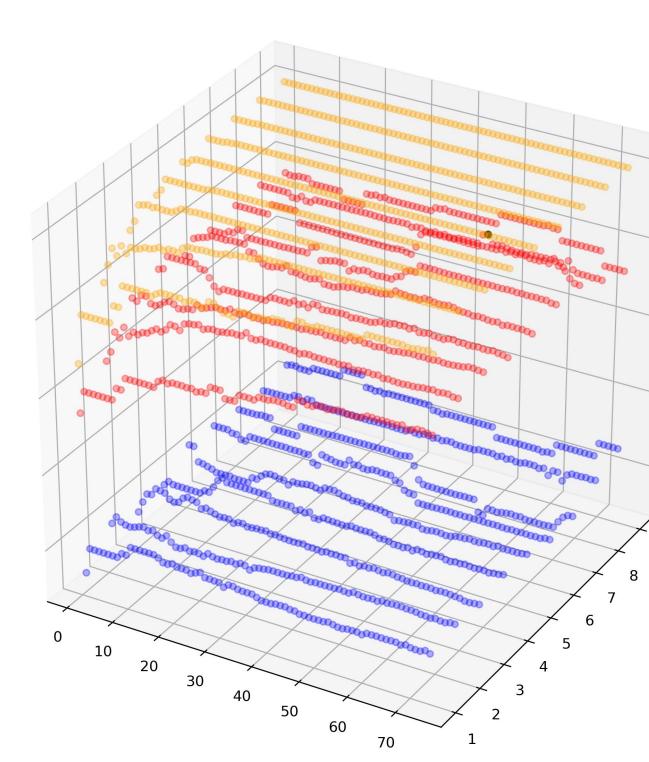


	MPR	DCG@20	Recall@20
Random embedding	0.1642	0.296	0.582
Neural embedding	0.0890	0.466	0.799
Feedback Jaccard based Fisher embedding	0.0853	0.437	0.794
Content based Fisher embedding	0.0985	0.405	0.757
Feedback and Content combination	0.0809	0.446	0.803

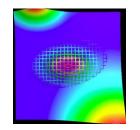
Manifolds or point clouds in machine learning ?



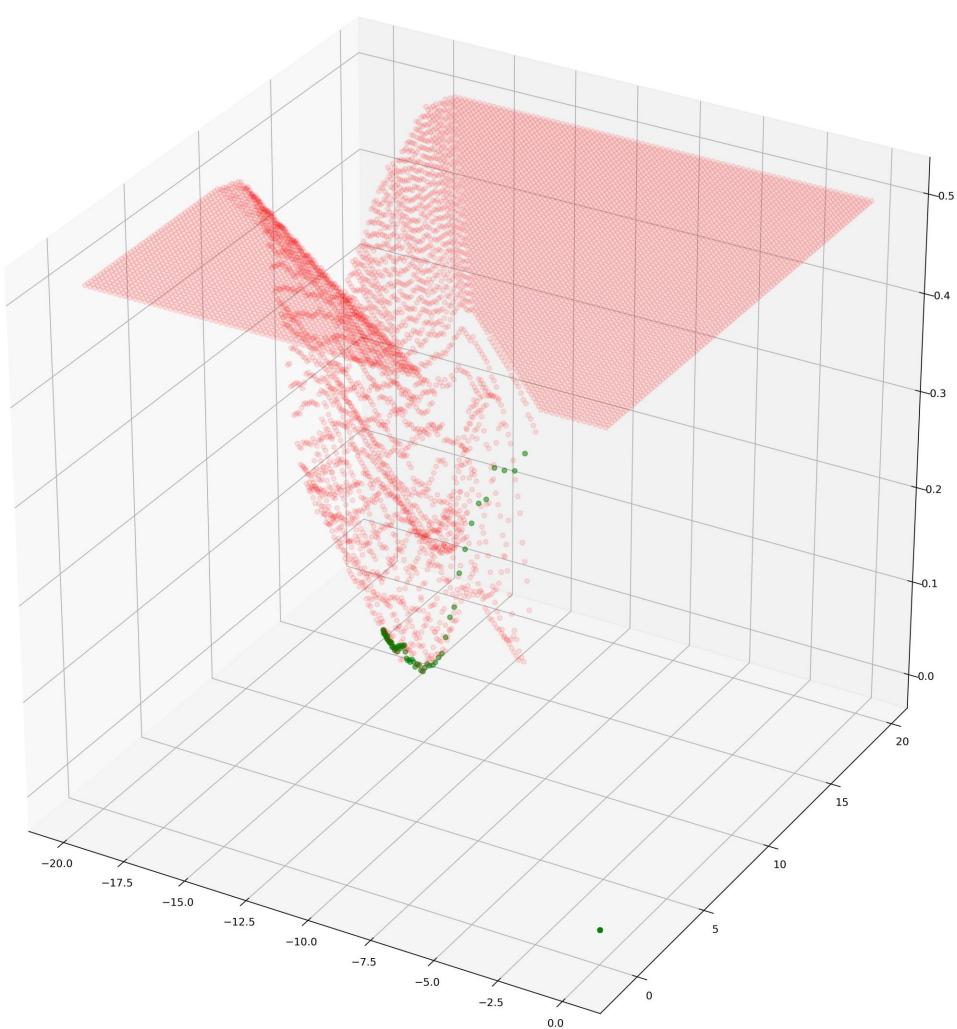




Hyperparameter surface



Example: linear separator in 2D with binary labels

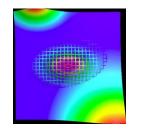


It looks interesting :)

What about Neural Networks? Later...

What kind of surface is that?

Spoiler: differentiable manifold



Manifolds are in a way surfaces

"Objects with n degree of freedom":

The dimension of a manifold is the number of free (independent) parameters to specify a point on the manifold (not equal to the embedded dimension!).

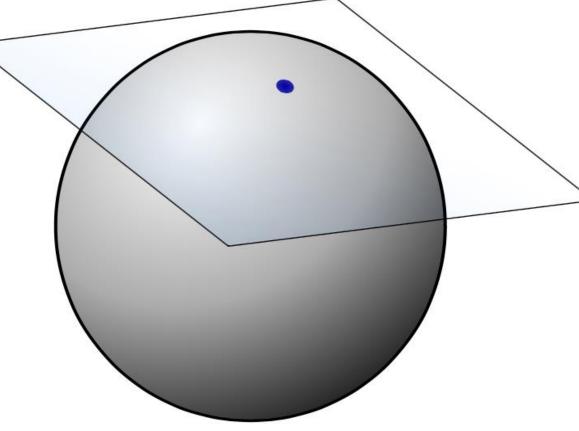
Examples:

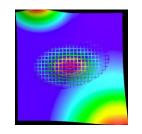
Curves embedded into 3D, x,y,z = f(t),g(t),h(t) for some continuous functions f,g,h

2. Surface of unit ball in R³ is a 2-dimensional manifold (unit sphere in n-dim: given a starting point the parametrization in the neighbourhood of the point is only n-1 dimensional)

3. Solid ball in R³ is a 3-dimensional manifold

Manifolds





Topological manifold

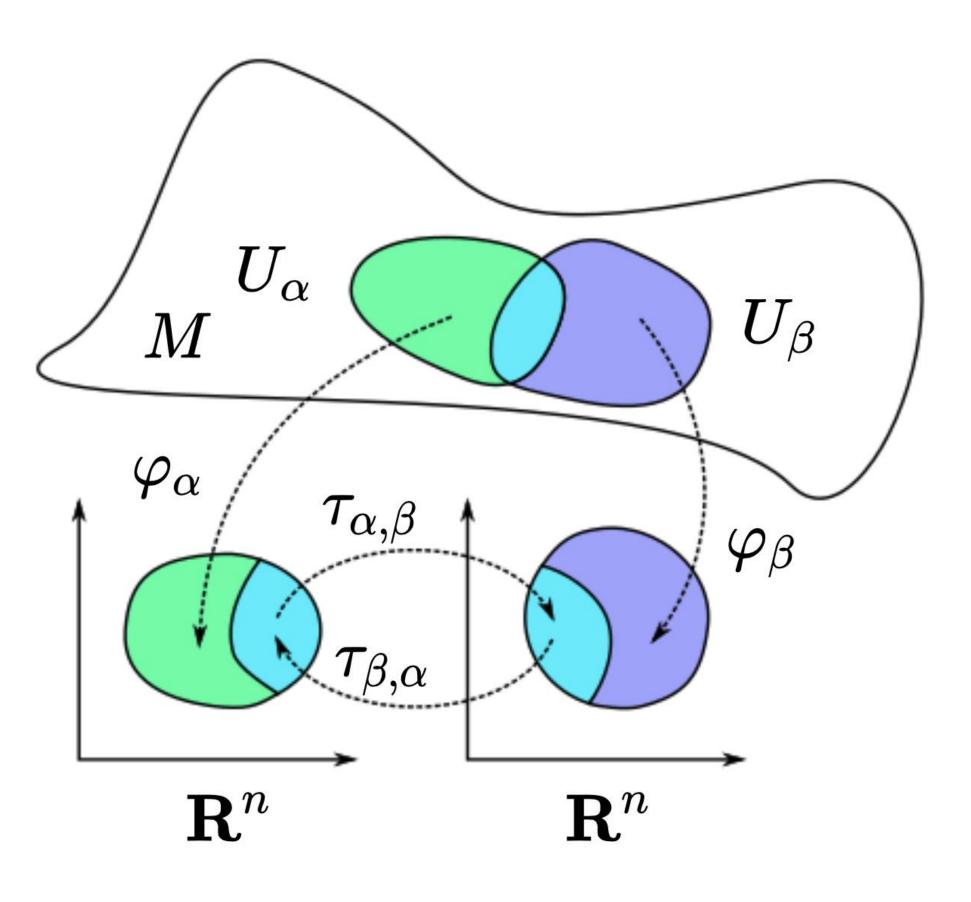
Topological manifold: topological space which locally resembles Euclidean (has a neighbourhood which is homeomorphic to Rⁿ)

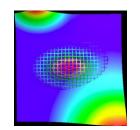
If the structure has some differential structure it is a differential manifold aka there exists some smooth function from element to element (point to point)

Connection: If the structure has some differential structure it is a differential manifold aka there exists some smooth function from element to element (point to point) on M

Riemann manifolds: Given a smooth (or differentiable) n-dimensional manifold M, a Riemannian metric g: TM x TM -> R on M (or TM) is a family of inner products $(\langle \bullet, \bullet \rangle_p)_{p \in M}$ on each tangent space T_pM , such that the inner product depends smoothly on p

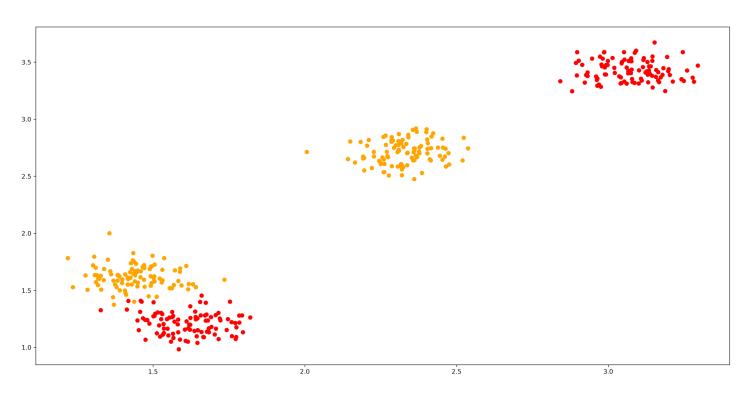
A smooth manifold M, with a Riemannian metric (RM) is called a Riemannian manifold

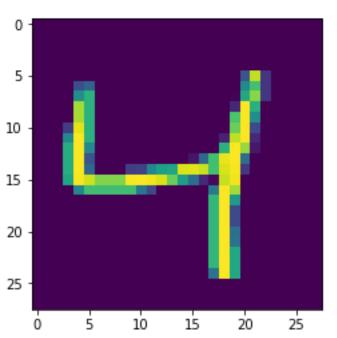




Loss

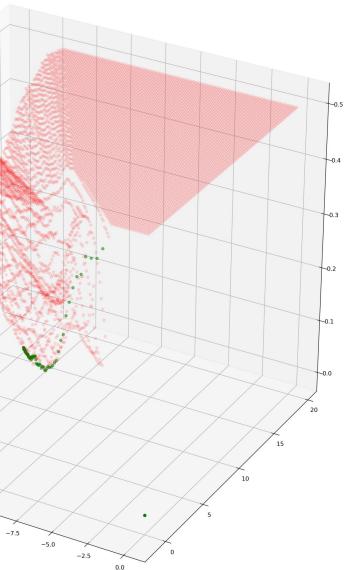
Data



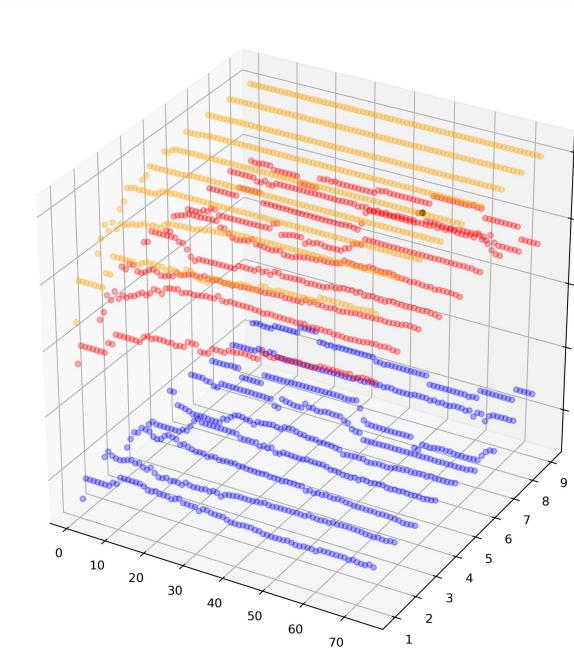


usually Diff. manifold! feed-forward NN is [Ollivier et al, 2015, Choromanska et al., 2015] statistical manifolds [Cencov, 1982, Campbell, 1986, Amari, 1996]

usually Not topological manifold!

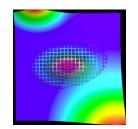


Hyperparameter surface

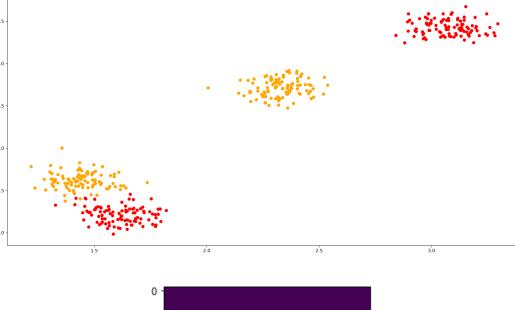


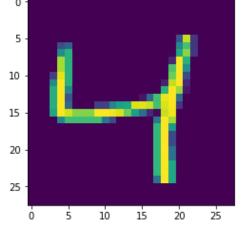
usually a set of topological manifolds but not diff....

- 1.0 - 0.8 - 0.6 0.4 0.2



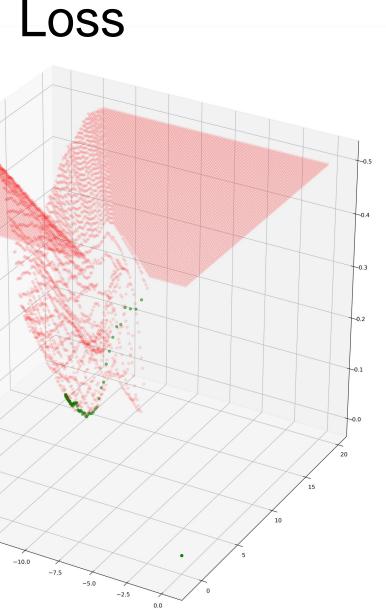
Data



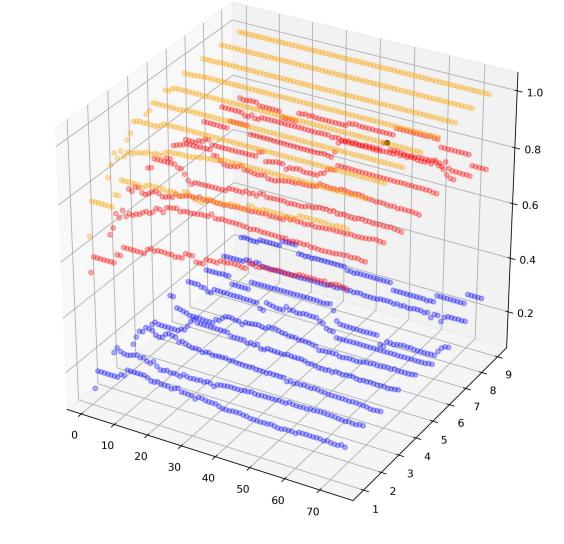


usually Not topological manifold! usually Diff. manifold!

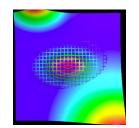
- Network structure?
- Regularization and Dropout [Hinton et al., 2012]?
 - Augmentation [Khrizhevsky et al., 2012]?



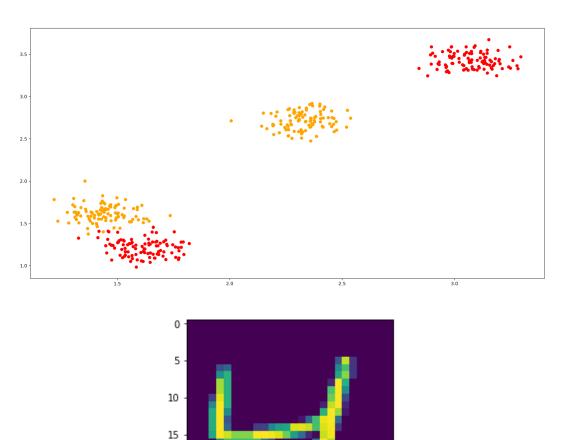
Hyperparameter surface

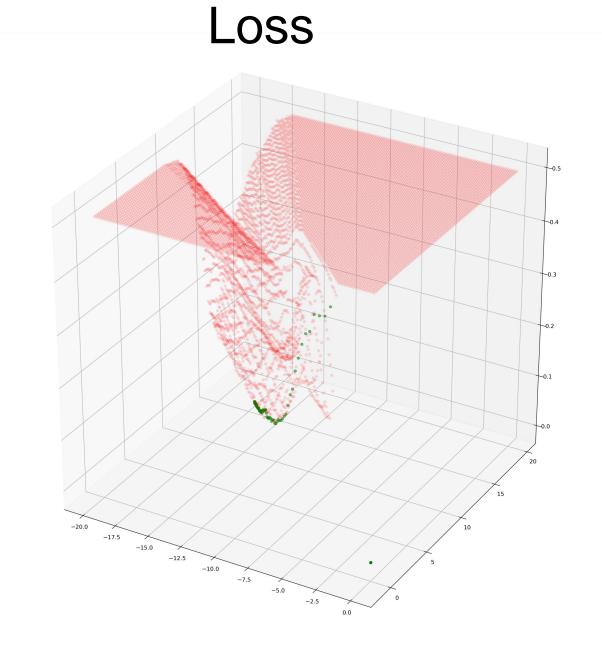


usually a set of topological manifolds but not diff....



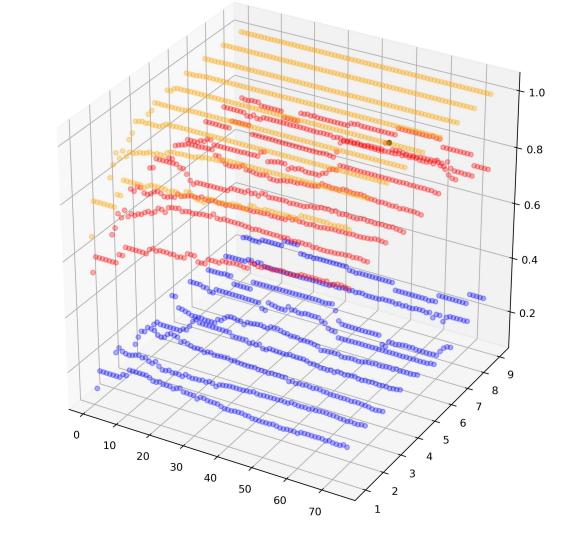
Data





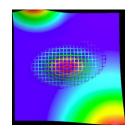
usually Not topological manifold! usually Diff. manifold! Regularization Augmentation [Khrizhevsky et al., 2012] and Dropout [Hinton et al., 2012]

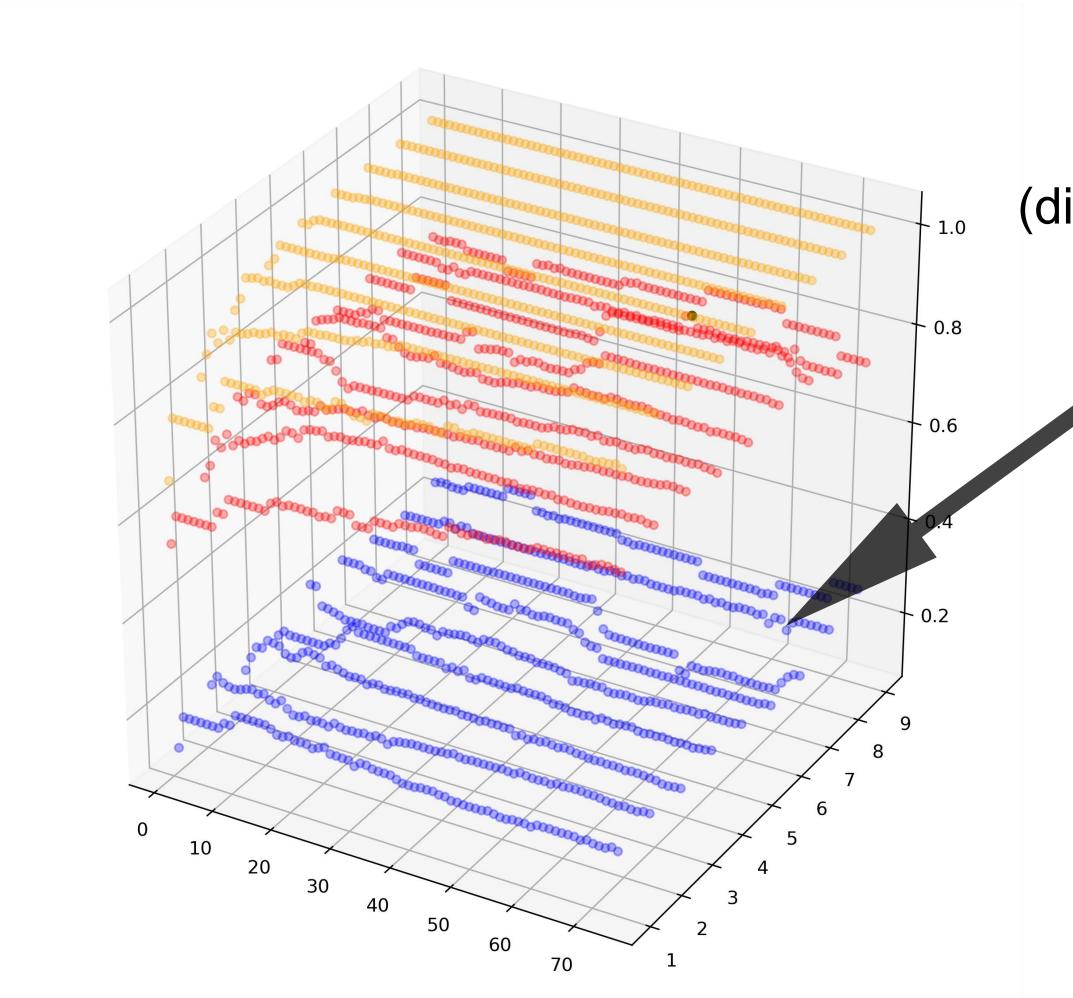
Hyperparameter surface



usually a set of topological manifolds but not diff....

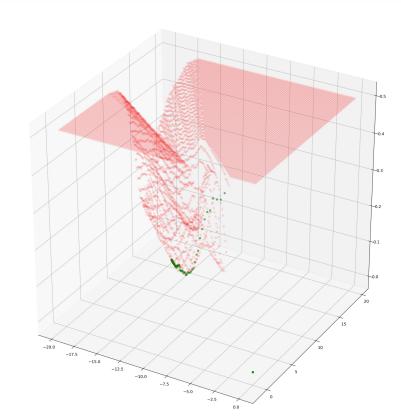
Network structure



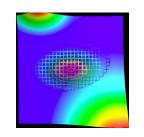


Generalization error (difference between the empirical loss and the expected loss) [Vapnik & Chervonenkis, 1971, Maas, 1993, Sontag, 1994, Bartlett, 2001] as a surface?

Approx: Difference between the loss on a validation set and the loss on the training set



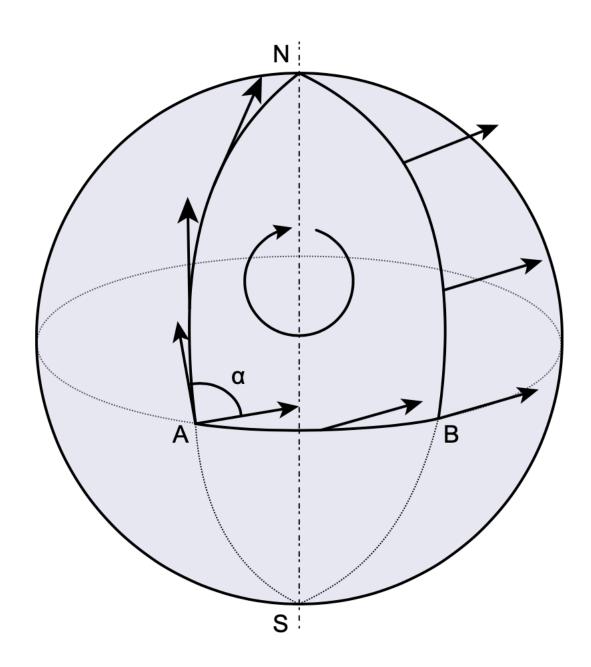
Now let us focus on the loss... what metric?

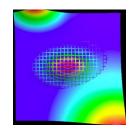


What metric? How to find paths on the surface?

• Simplest solution: first order GD...

- instead of exponential maps small steps
- momentum: e.g. [Polyak, 1964], Adam [Kingma&Ba, 2014], AdaGrad [Duchi et al., 2011], RMSProp [Tieleman&Hinton, 2012], Nesterov [Nesterov, 1983]
- Semi ideal metric:
 - special metrics e.g. Fisher information [Cencov, 1982, Campbell, 1985, Jaakola&Haussler, 1998, Perronnin et al., 2010]
 - learn a metric to preserve some properties of the inner product locally [D. et al, 2018]





- Previously determined metric
 - second order gradients?
 - Hessian metric -> pos. def.? :(
 - exponential maps
 - geodesic convexity [Wensing et al., 2018, Sra et al., 2018]
 - in case of loglikelihood
 - Fisher information and natural gradient: [Amari, 1996, Pascanu et al. 2014]

 $F(\theta) := \mathbf{E}(\nabla_{\theta} \log P(X|\theta) \nabla_{\theta} \log P(X|\theta)^{T})$

[1] Daróczy, B., Aleksziev, R., Benczúr, A. Sparse Hessian manifolds over feed-forward neural networks, under submission

What metric?

Presumption of GradNet [1]: let the loss (f) be a parametric cdf so that

- the Hessian $h_{\theta}(x) = H_{\theta}(f(x;\theta))$ exists: • $h_{ij} = \frac{\partial^2 f(x;\theta)}{\partial \theta_i \partial \theta_j}$
- there is a RM where g is a quasi-arithmetic mean: •

$$G = g_X(h_\theta(x))$$

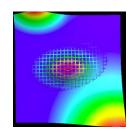
and the kernel (Hessian kernel, inverse!) •

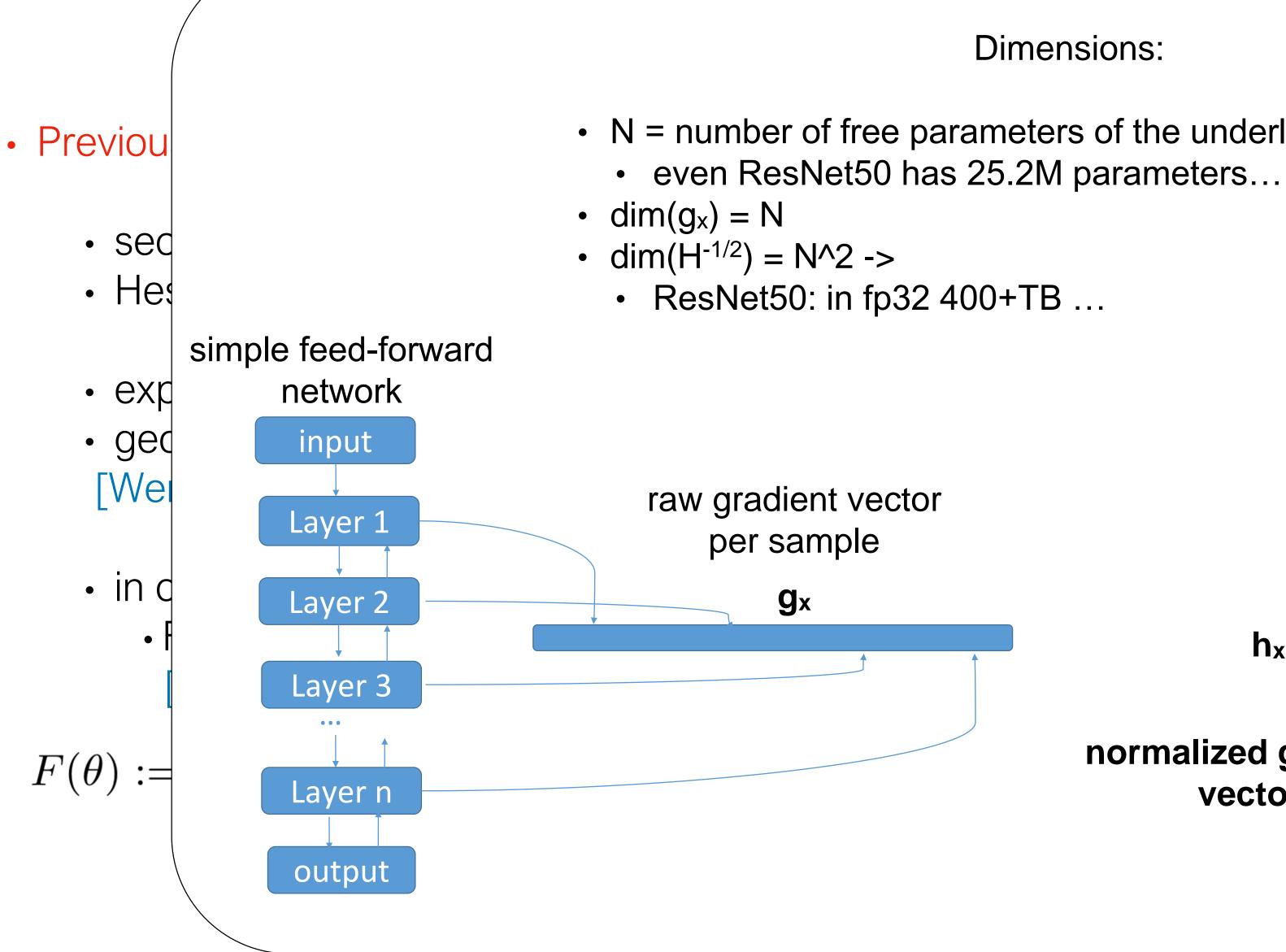
$$K_{\theta}(x_i, x_j) = \nabla_{\theta} f(x_i; \theta)^T G_{\theta}^{-1} \nabla_{\theta} f(x_j; \theta)$$

satisfies the Mercer's conditions

dot product approximation: ullet

$$h_{\theta}(x) = \nabla_{\theta} f(x;\theta)^T \nabla_{\theta} f(x;\theta)$$

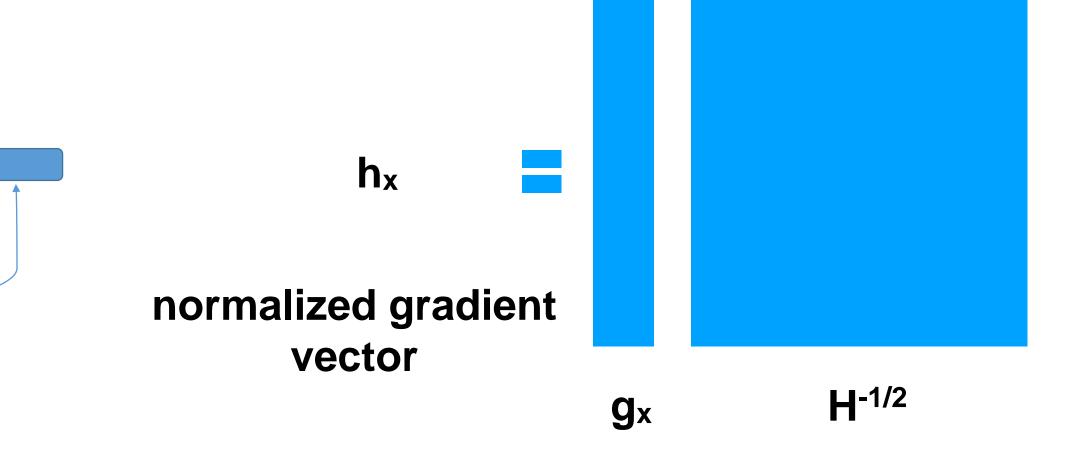




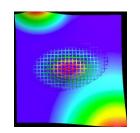
What metric?

Dimensions:

• N = number of free parameters of the underlying model ...

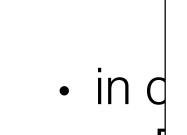


hat In:



Previou

- Sec
- He
- exp
- ged [Wei



 $F(\theta) :=$



Computational complexity:

- over the frameworks due integrated aggregation
- H :
 - expected value (if we can store...) -> approximation via a validation set
 - inverse computation ... -> diagonal approximation

or?

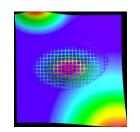
What metric?

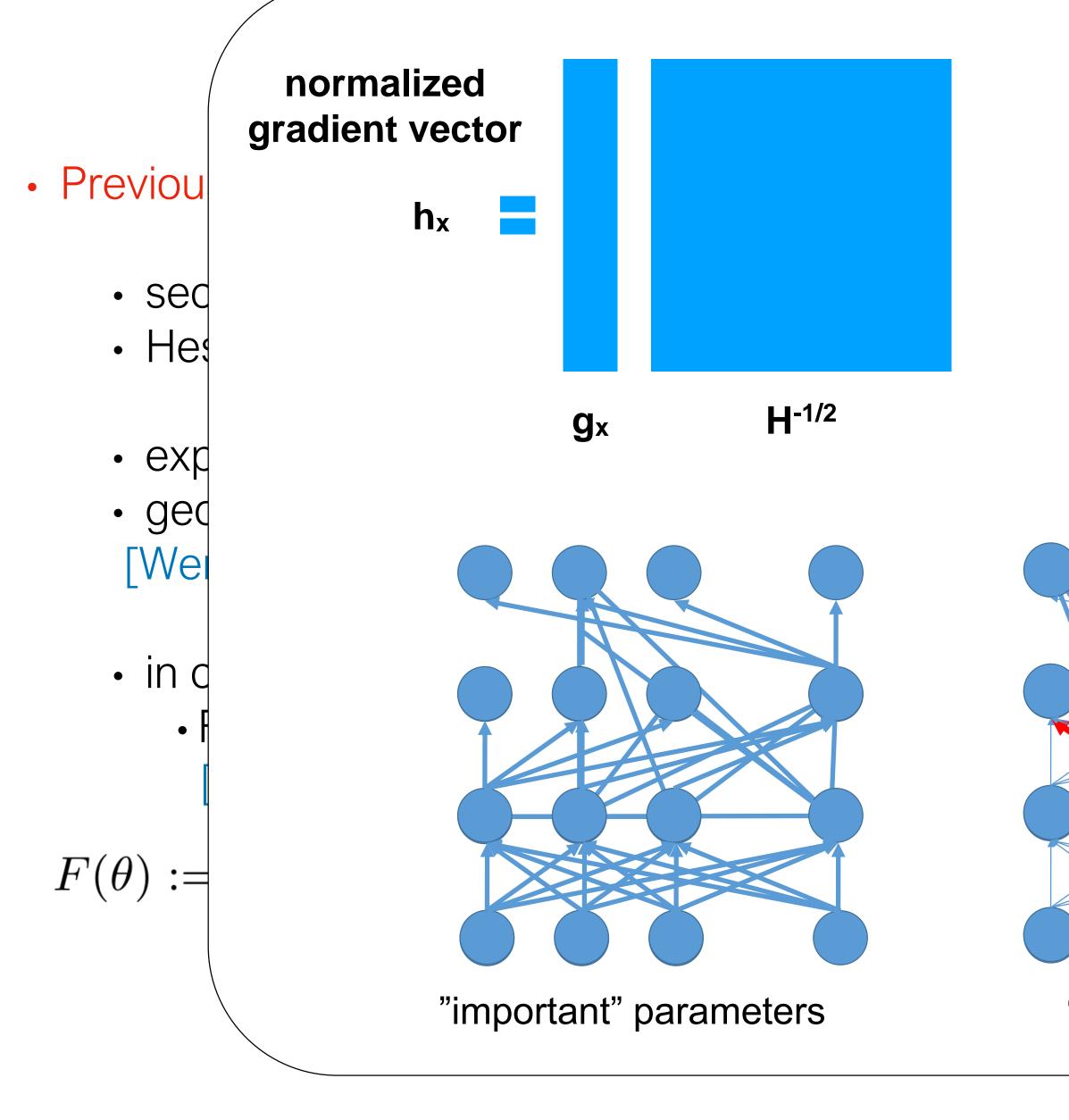
Dimensions:

- N = number of free parameters of the underlying model ...
 - even ResNet50 has 25.2M parameters...
- dim $(g_x) = N$
- $\dim(H^{-1/2}) = N^2 ->$
 - ResNet50: in fp32 400+TB...

• g_x : at every step we back-propagate per sample ... existing frameworks (TF, Torch, Chainer etc.) are not suitable -> even if we have every value at some point in the GPU it will be slow

hat In:

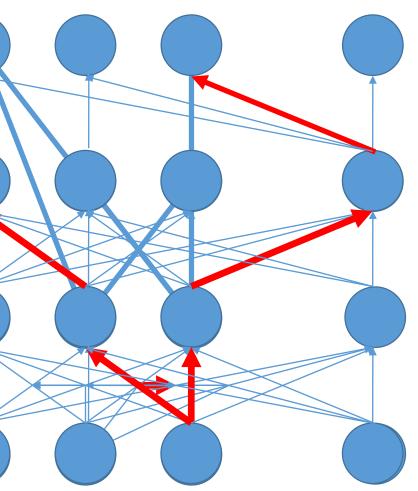




What metric?

Dimensions:

- N = number of free parameters of the underlying model ...
 - even ResNet50 has 25.2M parameters...
- $\dim(g_x) = N$
- $\dim(H^{-1/2}) = N^2 ->$
 - ResNet50: in fp32 400+TB ...

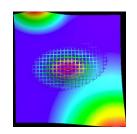


Hypothesis: Sparse Hessian <-> sparsity and invariance inside the Deep NN

Identify flows -> sparse gradient

"surviving" paths

hat In:



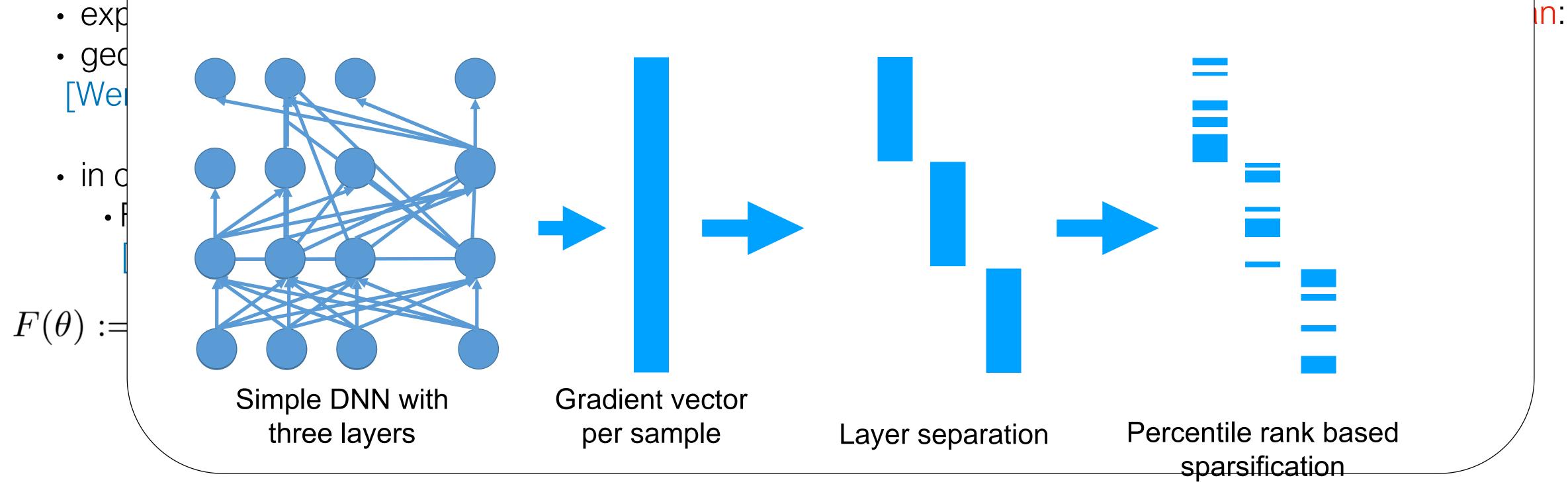
Previou

• Seq

• Hes

Hierarchical nature of feed-forward networks

Experiments: 15% of the gradient is sufficient

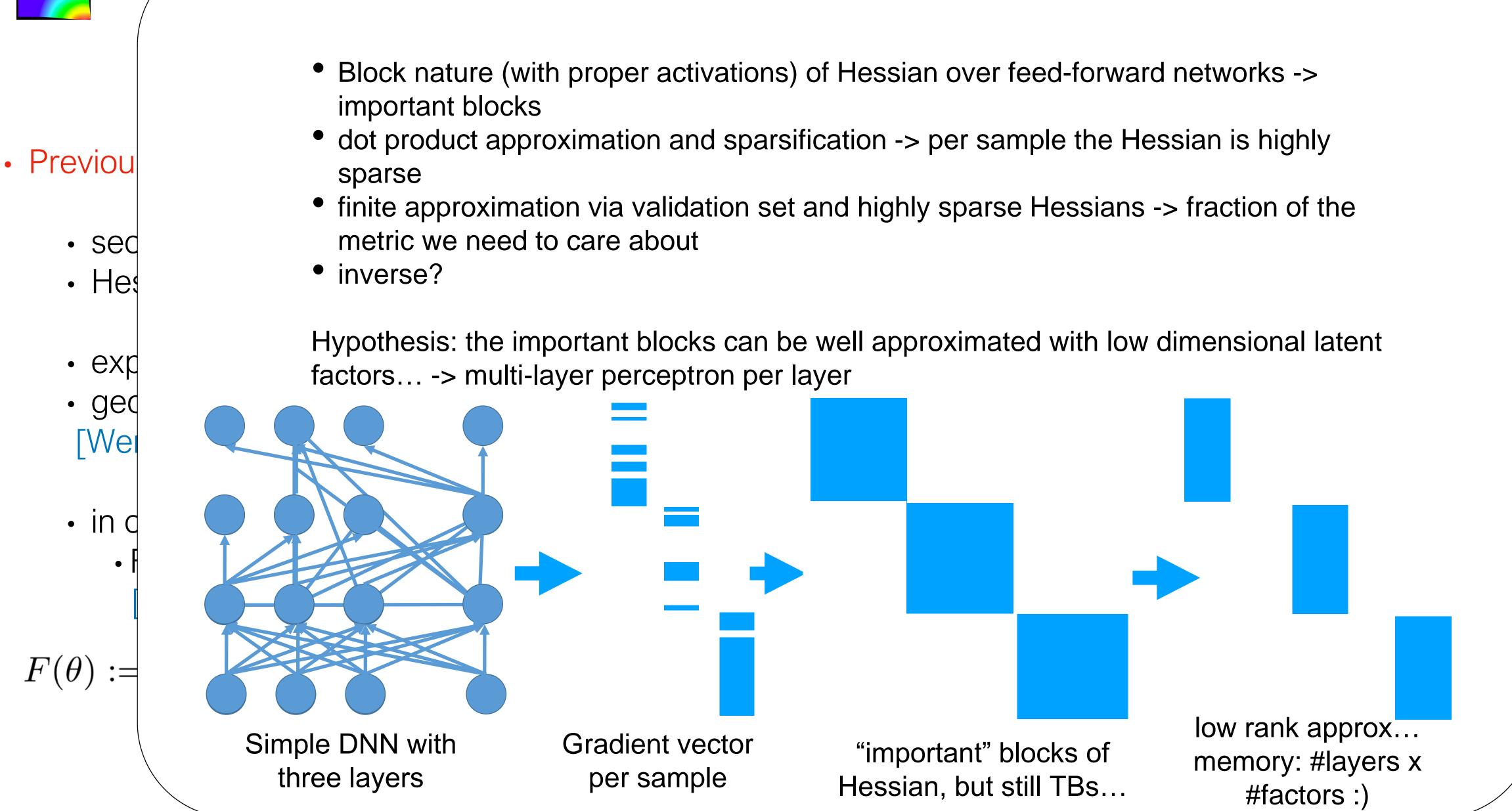


What metric?

Sparsification of the gradients:

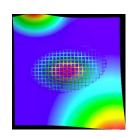
 Percentile rank per layer... on GPU? CuPy for Chainer • Leave only a fraction of the gradient vectors per layer

hat



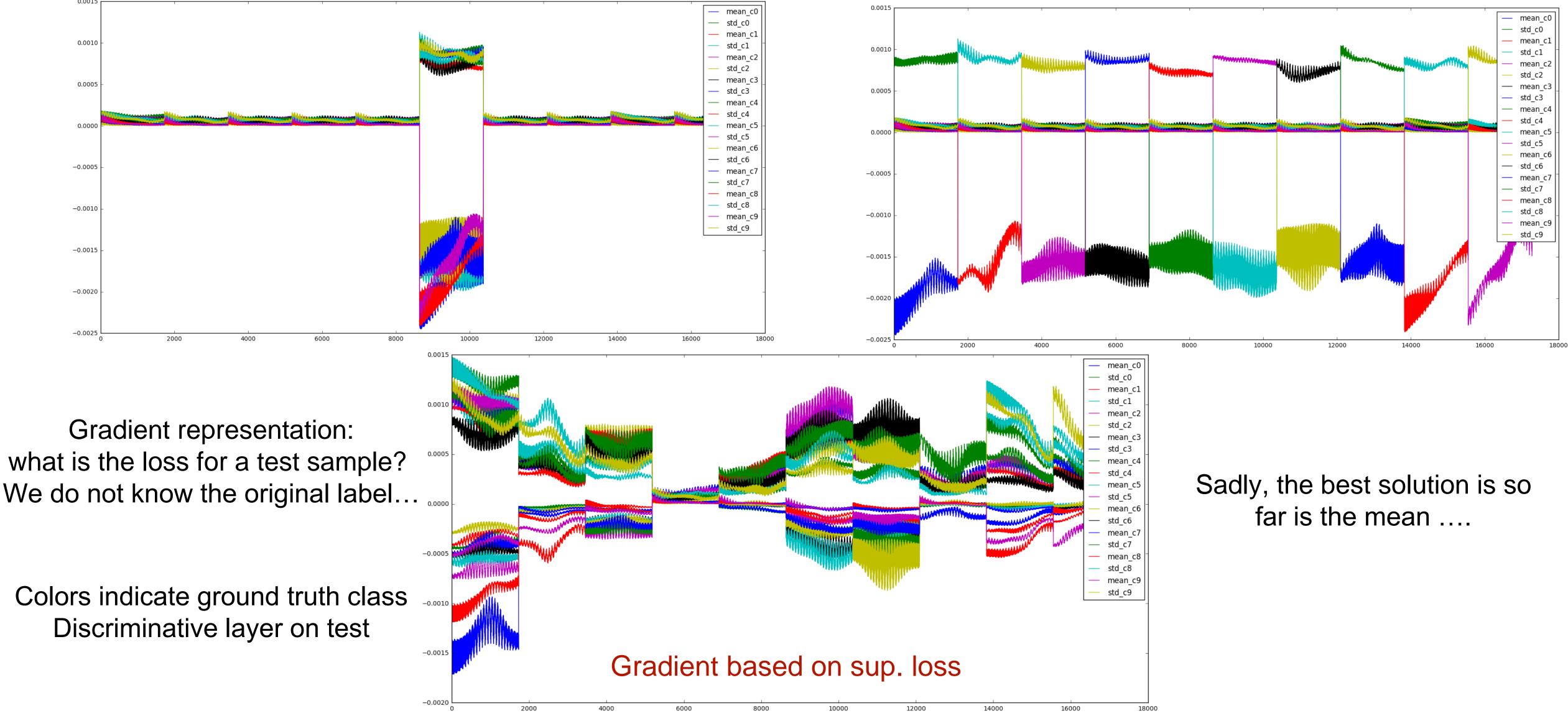
Sparsification of the metric:

nat in:



Ok, what are the partial gradients of the loss of unknown labeled sample?

Gradient based on fixed target loss



Gradient based on GT loss

GradNet: Experiments with a simple 3-layer CNN with 120k parameters on CIFAR and MNIST

Table 1: Performance measure of the normalized gradient based on RBM.

MNIST				
#hidden	Original	Improved		
16	0.6834	0.9675		
16	0.8997	0.9734		
64	0.872	0.9822		
64	0.9134	0.9876		

Figure 3: Optimization methods

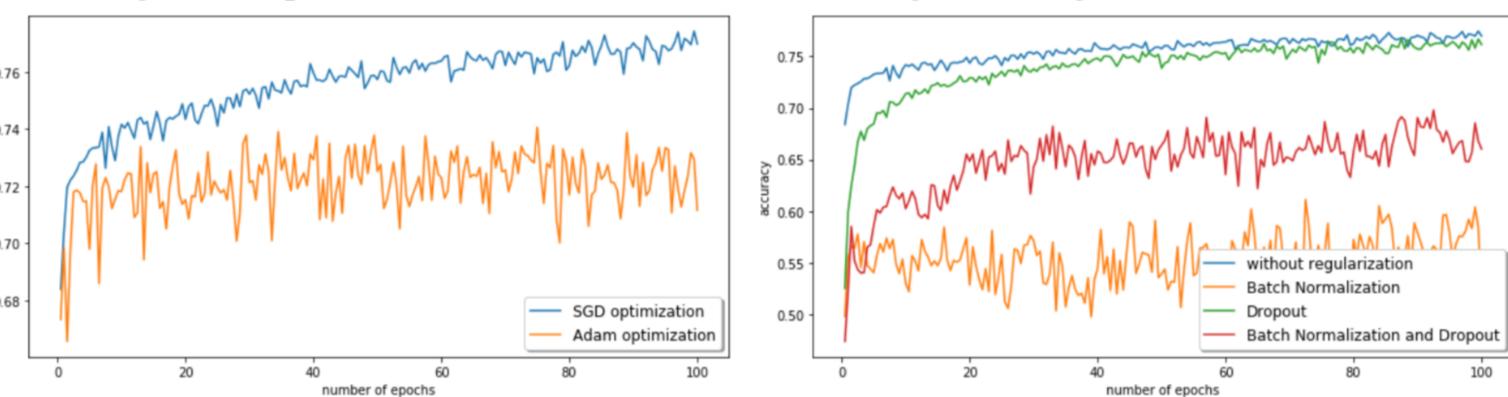
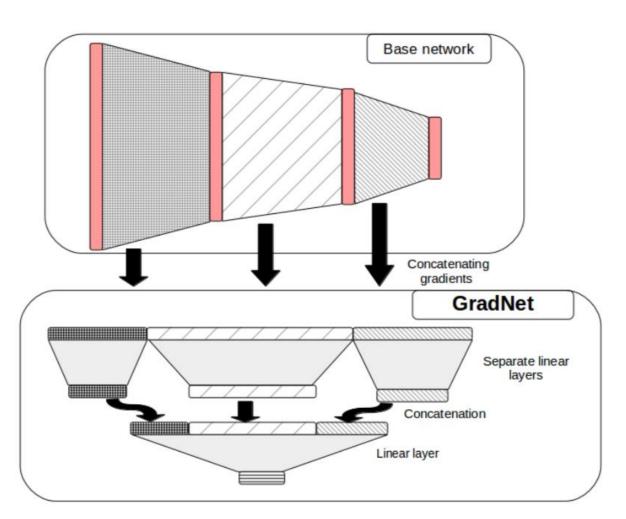


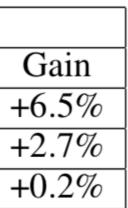
Table 2: Performance measure of the improved networks.

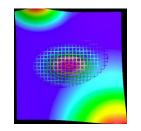
CIFAR				
Original	Improved	Gain		
0.79	0.8289	+4.9%		
0.76	0.8201	+7.9%		
0.74	0.8066	+9%		
0.72	0.7936	+10.2%		
0.68	0.7649	+12.5%		
0.65	0.7511	+15.5%		
0.62	0.7274	+17.3%		
0.55	0.7016	+27.5%		
0.51	0.6856	+34.4%		
0.49	0.678	+38.3%		

	MNIST
Original	Improved
0.92	0.98
0.96	0.9857
0.9894	0.9914

Figure 4: Regularization methods







- GPU memory can be really a constrain even for simple problems lacksquare
- Sometimes these constraints lead to interesting results (e.g. CIFAR-10 accuracy 0.828 vs. 0.801 with and without sparsification)
- Differential geometry could play an important role in the future of ML [Hyland and Ratsch, 2016, Wisdom et al., 2016, Ox et al., 2017]:
 - Pushforward, local diffeomorphisms (lower or higher dimensional, but a sparser tangent space): -> non trivial network structures? Ensemble of structures.
 - Lie groups -> left/right/bi-invariant transformations

Conclusions

Thank you!