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Basic specification: simulate fully quantum open dynamics in general

Schrodinger equation Hamiltonian in finite discrete basis

open dynamics jump (Lindblad) operators in the same basis
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Basic building blocks
free systems e.g. mode, spin, 1D motional degree of freedom
P or anything describable with 1 quantum number

interactions e.g. x-x, Jaynes-Cummings

Time-evolution modules for generic systems

» Master equation
» adaptive ODE evolution
» Monte Carlo wave-function trajectory
» method modified to adaptive time step
» ensemble of trajectories:
pemeniet) = ——————— 3" () (W(0)|

number of trajectories
i€ {set of trajectories }
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The Born-Markovian master equation

o= % [H, p] + ; (JmpJ; - % [JLJm,p]Jr) = 2§R{Hir;H p} + ;Jm (Unp)'

Lindblad operators J,,

non-Hermitian Hamiltonian H,y = H — % Em J,‘;,Jm

Example: driven mode @ finite temperature

Hamiltonian H = —da'a + (7] a + h.c‘)

Liouville superoperator

£(9) = - (2apa! ~ [aa.p] ) + s (2010 = [ad', ] )

=> quantum-jump operators

Jo=1+/2k_a (photon emission) <— = & (nm + 1)

T

J1 = \/2k4+ a' (photon absorption) K4 = K nm
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Description of open quantum systems

Unravelling into Monte Carlo wave-function trajectories

Method first published @ around 1990

Fixed Ot
1. Coherent step

> Non-unitary (norm-decreasing) evolution:
iHn Ot
|Won(t + 0t)) = (1 — ’%) [T (r))
» Total jump probability: 6p = 1 — || T (t + 0t)||" = 5tz [[Jm [T (1)

> Probability distribution of jumps: 8pm = 6t ||[Jm | (1)) || /5p
2. Probing for quantum jump with probability p

no |U(t+dt)) = |Wu(t+dt)) /v/1—dp
yes |U(t+ 6t)) = \/t/(0pmdp) Jm | ¥ (t)) distro Opp,
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» validity of ODE stepping
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Open quantum systems in C++QED
Amendment: adaptive MCWF

Upper limit of ot

» validity of ODE stepping
» Jp < 1= morethan 1 jumps per dt with negligible probability

Our stepsize control — new parameter Ap introduced

» ODE stepper internal mechanism (absolute and relative precision)
P 1st order stepping replaced by a higher-order adaptive ODE method
(e.g. RKCK)
> §p < Ap < 1 two stage control:

» §p 2 Ap = decrease Ot for the next timestep
> 5p > Ap = cancel timestep




MCWEF convergence - driven mode @ finite temperature

Quantifying the réle of Ap
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[Kornyik & Vukics, Comp. Phys. Comm. 238:88-101 (2019)]



MCWEF convergence - driven mode @ finite temperature
Quantifying the réle of Ap
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computational cost (arb. linear units)



MCWEF convergence - driven mode @ finite temperature
Quantifying the réle of Ap
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Compile-time algorithms

C++: compiled language + Turing-complete toolset available @ compile time

Implementation: Boost.MPL

fundamental design principle of C++QED

allinformation available @ compile time should be processed @ compile time
using template metaprogramming

given system ) data
e binary R . .
II compilation d execution with several possible
COCE system parameter sets

program (script)

For given simulation modules are assembled by high-level C++ program (script)
- defines the physical system and what to do with it

Compile only once = run several times

Layout of system known @ compile time = implies lots of compile-time calculations @gb



Excursus: Template metaprogramming physical application

Dimensional analysis

Let's teach C++ dimensions

» bring them into the type system <> “make them part of the grammar”

length time current temperature B
mass
exponents [1[2[-Fofoo[0] cCompiletime

value Runtime
Newton'’s law
» calculate:m*xa=F
[1]o]o] * [o[1[-4 __ [z[z]-9
m value a value - F value

small compile-time algorithm to calculate the resulting dimension

» try todononsense:m + a

should cause compilation error



Large-scale structure




Example script
defining the physical system

System defined as graph of interactions
Particle in ring cavity with two lossy modes, one pumped
k‘Onl[‘OSif\‘ constructor

ParticleAlongCavity
ModeBase O
ParticleBase 1

.
P.lrric[eﬂlnnqCavity
ModeBase 0
ParticleBase 1

ParticleTwoModes
ModeBase O
ModeBase 1
ParticleBase 2

(Free Nr. O} [Frcc Nr. T] {Frcc Nr. 2]

Particle LossyMode PumpedLossyMod,

interactions mostly binary, but also ternary, quaternary



Building blocks for physical systems

Few are needed for a given problem domain, each having clear physical meaning



Building blocks for physical systems

Few are needed for a given problem domain, each having clear physical meaning

polarizable particles in optical (cavity) fields

Frees | Interactions

(Pumped/Lossy)Mode | ParticleAlongCavity
(Pumped)Particle | ParticleOrthogonalToCavity
ParticleTwoModes

(ternary, quaternary)




Example script

1-3 Define system part : free elements
5 Specify initial condition

7-13 Specify & run time evolution
interactions

9-11 Define system part Il: layout of full system

Composite constructor

ParticleAlongCavi
d

0
o

P 1

ParcicleAlongCavi
)

o

P it 1

ParticleTwoModes

ModeBase 0

ModeBase 1

ParticleBase 2

[

Free Nr. O
Particle

J

Free Nr. 1
LossyMode

Free Nr. 2
PumpedLossyMode.

|
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Applications

~ 20 research papers in 2008-2019
Polarizable particles in optical fields

» particle in the field of a cavity mode

» two particles, two-mode resonator

Ultracold atoms in optical fields

» optical lattices or BEC in double-well potential coupled to cavity mode

(Cavity) optomechanics

Complex atoms in electromagnetic fields (with motion)

» Hamiltonian and Liouvillean assembled @ compile time



Implementation

Rely heavily on open-source libraries: Blitz++, Boost, GSL, FLENS

Python interface

Contributed by Raimar Sandner

#include "EvolutionComposite
#include "ParticleTwoModes.h"

int main(int arge, char* argv(])

ParaneterTable p;

pmp(
ParcPumpadLossy

particlecavity: :Parshlong ppcP(p, P!
barticlecavity: :ParsAlong ppch(p, M

PPCP.modeCav=MFT_PLUS; ppcH.modeCav=HFT_MINUS;
auto qup=updateWithpicture(p,argc,argy,"--");

e e
(make (pmP’ qmp)

// Copyright Andras Vukics 2006-2014. Distributed under the Boost Software License
-h

(ERTHLNAT R0 S

Bl
psi 3 P pri)) ;
evolve<o>(psi,
Eomposite: inake(
e (Particleatongcauity (pLus part ect
219, (rartictenlongcavity (hinus:art bo
JSLiZ o particietatiodes s
pe);

import Sys

From cpypyqed import *

p=paraneters.ParaneterTable()

pe=evolution. Pars(p)

pp=particle.Pars(p)

pnP=node. ParsLossy(p,"P")
mode. ParsLossy(p, "M")

articlecavity.ParsAlong(p, "P*)
ppch=particlecavity.ParsAlong(p, "M")

ppcP  modeCav=ModeFunctionType. PLUS
lodeFunctionType HINUS

qnp=updateWithPicture (p,sys.argy,"--")

article.make(pp ,qnp)
mode . make (pnP, qnp)
minus=  mode nake pnit, qup)
evolve(particle.waveracket (pp]*snode.init(paF) semode. init (paH).
Tl ek rtoch),
T et e

pe)

pcM) .
(1 2,0) :ParticleTwoModes (plus,minus, part, ppcP, ppch)}) .
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Present problem

Fundamental datastructure (Blitz++ library) outdated

Requirements for replacement

» multiarray interface
P sparse representation capabilities
» efficient operations + linear algebra

» C++11 features, eg.

P variadic indexing
P move semantics

Most promising candidate: QuantStack/Xtensor library



Thank you for your attention!

http://cppged.sf.net
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