C++QED - a framework for simulating
open quantum dynamics

the first ten years

Andras Vukics

Department of Quantum Optics and Quantum Information
Institute for Solid State Physics and Optics
Wigner Research Centre for Physics of the Hungarian Academy of Sciences

GPU Day 2019

The Future of Computing, Graphics and Data Analysis

11-1207 2019

C-)cED LLIF m

CIRCUIT AND CAVITY .
cusnrun ececrroovianics D€ Wissenschaftsfonds.




Introduction

Motivation

Building recyclable simulations for open quantum systems

(f0ed - define elementary physical systems as building blocks of composite systems
+ time-evolution modules



Introduction

Motivation

Building recyclable simulations for open quantum systems

(f0ed - define elementary physical systems as building blocks of composite systems
+ time-evolution modules

History

Cavity QED with moving particles = (i(ed
Subsequently: general quantum optics, atomic and molecular(, many-body) physics

Open-source framework http://cppqged.sf .net/
2006-2008: version1 partial documentation EPJD44:585(2007)
2008-: version2 online documentation + CPC 183:1381(2012) and 185:2380(2014)



Introduction

Motivation

Building recyclable simulations for open quantum systems

(f0ed - define elementary physical systems as building blocks of composite systems
+ time-evolution modules

History

Cavity QED with moving particles = (i(ed
Subsequently: general quantum optics, atomic and molecular(, many-body) physics

Open-source framework http://cppged.sf.net/
2006-2008: version1 partial documentation EPJD44:585(2007)
2008-: version2 online documentation + CPC 183:1381(2012) and 185:2380(2014)

Basic specification: simulate fully quantum open dynamics in general

Schrodinger equation Hamiltonian in finite discrete basis

open dynamics jump (Lindblad) operators in the same basis




Further specification

Basic building blocks

free systems e.g. mode, spin, 1D motional degree of freedom

P or anything describable with 1 quantum number

interactions e.g. x-x, Jaynes-Cummings



Further specification

Basic building blocks
free systems e.g. mode, spin, 1D motional degree of freedom
P or anything describable with 1 quantum number

interactions e.g. x-x, Jaynes-Cummings

Time-evolution modules for generic systems

» Master equation
» adaptive ODE evolution
» Monte Carlo wave-function trajectory
» method modified to adaptive time step
» ensemble of trajectories:
pemeniet) = ——————— 3" () (W(0)|

number of trajectories
i€ {set of trajectories }



Description of open quantum systems

The Born-Markovian master equation

o= % [H, p] + ; (JmpJ; - % [JLJm,p]+) = 2§R{HE_H p} + ;Jm (Unp)'

Lindblad operators J,,

non-Hermitian Hamiltonian H,y = H — % Em J,TT,Jm



Description of open quantum systems

The Born-Markovian master equation

o= % [H, p] + ; (JmpJ; - % [JLJm,p]Jr) = 2§R{Hir;H p} + ;Jm (Unp)'

Lindblad operators J,,

non-Hermitian Hamiltonian H,y = H — % Em J,‘;,Jm

Example: driven mode @ finite temperature

Hamiltonian H = —da'a + (7] a + h.c‘)

Liouville superoperator

£(9) = - (2apa! ~ [aa.p] ) + s (2010 = [ad', ] )

=> quantum-jump operators

Jo=1+/2k_a (photon emission) <— = & (nm + 1)

T

J1 = \/2k4+ a' (photon absorption) K4 = K nm




Description of open quantum systems

Unravelling into Monte Carlo wave-function trajectories

Method first published @ around 1990



Description of open quantum systems

Unravelling into Monte Carlo wave-function trajectories

Method first published @ around 1990

Fixed Ot
1. Coherent step

P Non-unitary (norm-decreasing) evolution:
iHn Ot
|Won(t + 0t)) = (1 — ’%) [T (r))
> Total jump probability: dp = 1 — || Tnu(t + 60)||” = 5tz [[Jm [T (1)

> Probability distribution of jumps: 8pm = 6t ||Jm [T (1)) || /5p



Description of open quantum systems

Unravelling into Monte Carlo wave-function trajectories

Method first published @ around 1990

Fixed Ot
1. Coherent step

> Non-unitary (norm-decreasing) evolution:
iHn Ot
|Won(t + 0t)) = (1 — ’%) [T (r))
» Total jump probability: 6p = 1 — || T (t + 0t)||" = 5tz [[Jm [T (1)

> Probability distribution of jumps: 8pm = 6t ||[Jm | (1)) || /5p
2. Probing for quantum jump with probability p

no |U(t+dt)) = |Wu(t+dt)) /v/1—dp
yes |U(t+ 6t)) = \/t/(0pmdp) Jm | ¥ (t)) distro Opp,



Open quantum systems in C++QED
Amendment: adaptive MCWF

Upper limit of ot

» validity of ODE stepping
» Jp < 1= morethan 1 jumps per dt with negligible probability



Open quantum systems in C++QED
Amendment: adaptive MCWF

Upper limit of ot

» validity of ODE stepping
» Jp < 1= morethan 1 jumps per dt with negligible probability

Our stepsize control — new parameter Ap introduced

» ODE stepper internal mechanism (absolute and relative precision)
P 1st order stepping replaced by a higher-order adaptive ODE method
(e.g. RKCK)
> §p < Ap < 1 two stage control:

» §p 2 Ap = decrease Ot for the next timestep
> 5p > Ap = cancel timestep




MCWEF convergence - driven mode @ finite temperature

Quantifying the réle of Ap

100.
c
o
2
=2
3 100
— .
g T
X
o]
£
o
£
=
c
o
=
.‘g 102
@ 1072 Ap
kel
) —+= 10
.E —— 084
o —— 072
[ —— o061
—— 05
—— 0495
—= 01 10
10 —— 005
—— 002 % £3 % @

10? 10° 10* 10°
number of trajectories

=X

[Kornyik & Vukics, Comp. Phys. Comm. 238:88-101 (2019)]



MCWEF convergence - driven mode @ finite temperature
Quantifying the réle of Ap

350000
102 300000
L}
o
o 250000
5 9x10-
Gl
@
-
g 200000
b
g =
3 8x10
&
= F 150000
S
£
£
<
- 100000
7x107?
- 50000
e N
'y P °
6x10-
10 10+ 100

[Kornyik & Vukics, Comp. Phys. Comm. 238:88-101 (2019)]

computational cost (arb. linear units)



MCWEF convergence - driven mode @ finite temperature
Quantifying the réle of Ap

jump-probability
‘ controlled
0 i regime domain of
contention
°
g \
g ox10°
g
g :
§ sx10° ODE controlled
< regime
=]
:
>
<
7x107
=5
° g °
6x107*
10 10! 10°

[Kornyik & Vukics, Comp. Phys. Comm. 238:88-101 (2019)]

350000

300000

250000

8
g
8

150000

g
g

computational cost (arb. linear units)



Compile-time algorithms

C++: compiled language + Turing-complete toolset available @ compile time

Implementation: Boost.MPL



Compile-time algorithms

C++: compiled language + Turing-complete toolset available @ compile time

Implementation: Boost.MPL

fundamental design principle of C++QED

allinformation available @ compile time should be processed @ compile time
using template metaprogramming




Compile-time algorithms

C++: compiled language + Turing-complete toolset available @ compile time

Implementation: Boost.MPL

fundamental design principle of C++QED

allinformation available @ compile time should be processed @ compile time
using template metaprogramming

given system ) data
ﬁ: compilation binary execution  with several possible
code E—

program (script) system parameter sets



Compile-time algorithms

C++: compiled language + Turing-complete toolset available @ compile time

Implementation: Boost.MPL

fundamental design principle of C++QED

allinformation available @ compile time should be processed @ compile time
using template metaprogramming

given system ) data
e binary R . .
II compilation d execution with several possible
COCE system parameter sets

program (script)

For given simulation modules are assembled by high-level C++ program (script)
- defines the physical system and what to do with it

Compile only once = run several times

Layout of system known @ compile time = implies lots of compile-time calculations @gb



Excursus: Template metaprogramming physical application

Dimensional analysis

Let's teach C++ dimensions

» bring them into the type system <> “make them part of the grammar”

length time current temperature B
mass
exponents [1[2[-Fofoo[0] cCompiletime

value Runtime
Newton'’s law
» calculate:m*xa=F
[1]o]o] * [o[1[-4 __ [z[z]-9
m value a value - F value

small compile-time algorithm to calculate the resulting dimension

» try todononsense:m + a

should cause compilation error



Large-scale structure




Example script
defining the physical system

System defined as graph of interactions
Particle in ring cavity with two lossy modes, one pumped
k‘Onl[‘OSif\‘ constructor

ParticleAlongCavity
ModeBase O
ParticleBase 1

.
P.lrric[eﬂlnnqCavity
ModeBase 0
ParticleBase 1

ParticleTwoModes
ModeBase O
ModeBase 1
ParticleBase 2

(Free Nr. O} [Frcc Nr. T] {Frcc Nr. 2]

Particle LossyMode PumpedLossyMod,

interactions mostly binary, but also ternary, quaternary



Building blocks for physical systems

Few are needed for a given problem domain, each having clear physical meaning



Building blocks for physical systems

Few are needed for a given problem domain, each having clear physical meaning

polarizable particles in optical (cavity) fields

Frees | Interactions

(Pumped/Lossy)Mode | ParticleAlongCavity
(Pumped)Particle | ParticleOrthogonalToCavity
ParticleTwoModes

(ternary, quaternary)




Example script

1-3 Define system part : free elements
5 Specify initial condition

7-13 Specify & run time evolution
interactions

9-11 Define system part Il: layout of full system

Composite constructor

ParticleAlongCavi
d

0
o

P 1

ParcicleAlongCavi
)

o

P it 1

ParticleTwoModes

ModeBase 0

ModeBase 1

ParticleBase 2

[

Free Nr. O
Particle

J

Free Nr. 1
LossyMode

Free Nr. 2
PumpedLossyMode.

|




Applications

~ 20 research papers in 2008-2019
Polarizable particles in optical fields

» particle in the field of a cavity mode

» two particles, two-mode resonator



Applications

~ 20 research papers in 2008-2019
Polarizable particles in optical fields

» particle in the field of a cavity mode

» two particles, two-mode resonator

Ultracold atoms in optical fields

» optical lattices or BEC in double-well potential coupled to cavity mode



Applications

~ 20 research papers in 2008-2019
Polarizable particles in optical fields

» particle in the field of a cavity mode

» two particles, two-mode resonator

Ultracold atoms in optical fields

» optical lattices or BEC in double-well potential coupled to cavity mode

(Cavity) optomechanics



Applications

~ 20 research papers in 2008-2019
Polarizable particles in optical fields

» particle in the field of a cavity mode

» two particles, two-mode resonator

Ultracold atoms in optical fields

» optical lattices or BEC in double-well potential coupled to cavity mode

(Cavity) optomechanics

Complex atoms in electromagnetic fields (with motion)

» Hamiltonian and Liouvillean assembled @ compile time



Implementation

Rely heavily on open-source libraries: Blitz++, Boost, GSL, FLENS

Python interface

Contributed by Raimar Sandner

#include "EvolutionComposite
#include "ParticleTwoModes.h"

int main(int arge, char* argv(])

ParaneterTable p;

pmp(
ParcPumpadLossy

particlecavity: :Parshlong ppcP(p, P!
barticlecavity: :ParsAlong ppch(p, M

PPCP.modeCav=MFT_PLUS; ppcH.modeCav=HFT_MINUS;
auto qup=updateWithpicture(p,argc,argy,"--");

e e
(make (pmP’ qmp)

// Copyright Andras Vukics 2006-2014. Distributed under the Boost Software License
-h

(ERTHLNAT R0 S

Bl
psi 3 P pri)) ;
evolve<o>(psi,
Eomposite: inake(
e (Particleatongcauity (pLus part ect
219, (rartictenlongcavity (hinus:art bo
JSLiZ o particietatiodes s
pe);

import Sys

From cpypyqed import *

p=paraneters.ParaneterTable()

pe=evolution. Pars(p)

pp=particle.Pars(p)

pnP=node. ParsLossy(p,"P")
mode. ParsLossy(p, "M")

articlecavity.ParsAlong(p, "P*)
ppch=particlecavity.ParsAlong(p, "M")

ppcP  modeCav=ModeFunctionType. PLUS
lodeFunctionType HINUS

qnp=updateWithPicture (p,sys.argy,"--")

article.make(pp ,qnp)
mode . make (pnP, qnp)
minus=  mode nake pnit, qup)
evolve(particle.waveracket (pp]*snode.init(paF) semode. init (paH).
Tl ek rtoch),
T et e

pe)

pcM) .
(1 2,0) :ParticleTwoModes (plus,minus, part, ppcP, ppch)}) .



Present problem

Fundamental datastructure (Blitz++ library) outdated



Present problem

Fundamental datastructure (Blitz++ library) outdated

Requirements for replacement

» multiarray interface
P sparse representation capabilities
» efficient operations + linear algebra

» C++11 features, eg.

P variadic indexing
P move semantics




Present problem

Fundamental datastructure (Blitz++ library) outdated

Requirements for replacement

» multiarray interface
P sparse representation capabilities
» efficient operations + linear algebra

» C++11 features, eg.

P variadic indexing
P move semantics

Most promising candidate: QuantStack/Xtensor library



Thank you for your attention!

http://cppged.sf.net

© @isner (5}




