
C++QED – a framework for simulating
open quantum dynamics

the first ten years

András Vukics

Department of Quantum Optics and Quantum Information
Institute for Solid State Physics and Optics

Wigner Research Centre for Physics of the Hungarian Academy of Sciences

Introduction

Motivation
Building recyclable simulations for open quantum systems

– define elementary physical systems as building blocks of composite systems
+ time-evolution modules

History
Cavity QED with moving particles⇒
Subsequently: general quantum optics, atomic and molecular(, many-body) physics

Open-source framework http://cppqed.sf.net/
2006–2008: version1 partial documentation EPJD44:585(2007)

2008–: version2 online documentation + CPC 183:1381(2012) and 185:2380(2014)

Basic specification: simulate fully quantum open dynamics in general

Schrödinger equation Hamiltonian in finite discrete basis

open dynamics jump (Lindblad) operators in the same basis

Introduction

Motivation
Building recyclable simulations for open quantum systems

– define elementary physical systems as building blocks of composite systems
+ time-evolution modules

History
Cavity QED with moving particles⇒
Subsequently: general quantum optics, atomic and molecular(, many-body) physics

Open-source framework http://cppqed.sf.net/
2006–2008: version1 partial documentation EPJD44:585(2007)

2008–: version2 online documentation + CPC 183:1381(2012) and 185:2380(2014)

Basic specification: simulate fully quantum open dynamics in general

Schrödinger equation Hamiltonian in finite discrete basis

open dynamics jump (Lindblad) operators in the same basis

Introduction

Motivation
Building recyclable simulations for open quantum systems

– define elementary physical systems as building blocks of composite systems
+ time-evolution modules

History
Cavity QED with moving particles⇒
Subsequently: general quantum optics, atomic and molecular(, many-body) physics

Open-source framework http://cppqed.sf.net/
2006–2008: version1 partial documentation EPJD44:585(2007)

2008–: version2 online documentation + CPC 183:1381(2012) and 185:2380(2014)

Basic specification: simulate fully quantum open dynamics in general

Schrödinger equation Hamiltonian in finite discrete basis

open dynamics jump (Lindblad) operators in the same basis

Further specification

Basic building blocks

free systems e.g. mode, spin, 1D motional degree of freedom
▶ or anything describable with 1 quantum number

interactions e.g. x–x, Jaynes-Cummings

Time-evolution modules for generic systems
▶ Master equation

▶ adaptive ODE evolution

▶ Monte Carlo wave-function trajectory
▶ method modified to adaptive time step

▶ ensemble of trajectories:

ρensemble(t) =
1

number of trajectories

∑
i∈{set of trajectories}

|Ψi(t)⟩ ⟨Ψi(t)|

Further specification

Basic building blocks

free systems e.g. mode, spin, 1D motional degree of freedom
▶ or anything describable with 1 quantum number

interactions e.g. x–x, Jaynes-Cummings

Time-evolution modules for generic systems
▶ Master equation

▶ adaptive ODE evolution

▶ Monte Carlo wave-function trajectory
▶ method modified to adaptive time step

▶ ensemble of trajectories:

ρensemble(t) =
1

number of trajectories

∑
i∈{set of trajectories}

|Ψi(t)⟩ ⟨Ψi(t)|

Description of open quantum systems
The Born-Markovian master equation

ρ̇ =
1

ih̄
[H, ρ] +

∑
m

(
JmρJ

†
m − 1

2

[
J†mJm, ρ

]
+

)
≡ 2ℜ

{HnH

ih̄
ρ
}
+

∑
m

Jm (Jmρ)
†

Lindblad operators Jm
non-Hermitian Hamiltonian HnH = H− ih̄

2

∑
m J†mJm

Example: driven mode @ finite temperature

Hamiltonian H = −δa†a+
(
η a† + h.c.

)
Liouville superoperator

L(ρ) = κ−

(
2aρa† −

[
a†a, ρ

]
+

)
+ κ+

(
2a†ρa−

[
a a†, ρ

]
+

)
⇒ quantum-jump operators

J0 =
√

2κ− a (photon emission) κ− = κ (nTh + 1)

J1 =
√

2κ+ a† (photon absorption) κ+ = κ nTh

Description of open quantum systems
The Born-Markovian master equation

ρ̇ =
1

ih̄
[H, ρ] +

∑
m

(
JmρJ

†
m − 1

2

[
J†mJm, ρ

]
+

)
≡ 2ℜ

{HnH

ih̄
ρ
}
+

∑
m

Jm (Jmρ)
†

Lindblad operators Jm
non-Hermitian Hamiltonian HnH = H− ih̄

2

∑
m J†mJm

Example: driven mode @ finite temperature

Hamiltonian H = −δa†a+
(
η a† + h.c.

)
Liouville superoperator

L(ρ) = κ−

(
2aρa† −

[
a†a, ρ

]
+

)
+ κ+

(
2a†ρa−

[
a a†, ρ

]
+

)
⇒ quantum-jump operators

J0 =
√

2κ− a (photon emission) κ− = κ (nTh + 1)

J1 =
√

2κ+ a† (photon absorption) κ+ = κ nTh

Description of open quantum systems
Unravelling into Monte Carlo wave-function trajectories

Method first published @ around 1990

Fixed δt

1. Coherent step
▶ Non-unitary (norm-decreasing) evolution:

|ΨnH(t+ δt)⟩ =
(
1− iHnH δt

h̄

)
|Ψ(t)⟩

▶ Total jump probability: δp = 1− ∥ΨnH(t+ δt)∥2 = δt
∑
m

∥Jm |Ψ(t)⟩∥2

▶ Probability distribution of jumps: δpm = δt ∥Jm |Ψ(t)⟩∥2 /δp
2. Probing for quantum jump with probability δp

no |Ψ(t+ δt)⟩ = |ΨnH(t+ δt)⟩ /
√
1− δp

yes |Ψ(t+ δt)⟩ =
√
δt/(δpmδp) Jm |Ψ(t)⟩ distro δpm

Description of open quantum systems
Unravelling into Monte Carlo wave-function trajectories

Method first published @ around 1990

Fixed δt
1. Coherent step

▶ Non-unitary (norm-decreasing) evolution:

|ΨnH(t+ δt)⟩ =
(
1− iHnH δt

h̄

)
|Ψ(t)⟩

▶ Total jump probability: δp = 1− ∥ΨnH(t+ δt)∥2 = δt
∑
m

∥Jm |Ψ(t)⟩∥2

▶ Probability distribution of jumps: δpm = δt ∥Jm |Ψ(t)⟩∥2 /δp

2. Probing for quantum jump with probability δp

no |Ψ(t+ δt)⟩ = |ΨnH(t+ δt)⟩ /
√
1− δp

yes |Ψ(t+ δt)⟩ =
√
δt/(δpmδp) Jm |Ψ(t)⟩ distro δpm

Description of open quantum systems
Unravelling into Monte Carlo wave-function trajectories

Method first published @ around 1990

Fixed δt
1. Coherent step

▶ Non-unitary (norm-decreasing) evolution:

|ΨnH(t+ δt)⟩ =
(
1− iHnH δt

h̄

)
|Ψ(t)⟩

▶ Total jump probability: δp = 1− ∥ΨnH(t+ δt)∥2 = δt
∑
m

∥Jm |Ψ(t)⟩∥2

▶ Probability distribution of jumps: δpm = δt ∥Jm |Ψ(t)⟩∥2 /δp
2. Probing for quantum jump with probability δp

no |Ψ(t+ δt)⟩ = |ΨnH(t+ δt)⟩ /
√
1− δp

yes |Ψ(t+ δt)⟩ =
√
δt/(δpmδp) Jm |Ψ(t)⟩ distro δpm

Open quantum systems in C++QED
Amendment: adaptive MCWF

Upper limit of δt

▶ validity of ODE stepping

▶ δp ≪ 1⇒ more than 1 jumps per δtwith negligible probability

Our stepsize control – new parameter∆p introduced

▶ ODE stepper internal mechanism (absolute and relative precision)
▶ 1st order stepping replaced by a higher-order adaptive ODE method

(e.g. RKCK)

▶ δp < ∆p ≪ 1 two stage control:
▶ δp ≳ ∆p⇒ decrease δt for the next timestep
▶ δp ≫ ∆p⇒ cancel timestep

Open quantum systems in C++QED
Amendment: adaptive MCWF

Upper limit of δt

▶ validity of ODE stepping

▶ δp ≪ 1⇒ more than 1 jumps per δtwith negligible probability

Our stepsize control – new parameter∆p introduced

▶ ODE stepper internal mechanism (absolute and relative precision)
▶ 1st order stepping replaced by a higher-order adaptive ODE method

(e.g. RKCK)

▶ δp < ∆p ≪ 1 two stage control:
▶ δp ≳ ∆p⇒ decrease δt for the next timestep
▶ δp ≫ ∆p⇒ cancel timestep

MCWF convergence – driven mode @ finite temperature
Quantifying the rôle of∆p

[Kornyik & Vukics, Comp. Phys. Comm. 238:88–101 (2019)]

MCWF convergence – driven mode @ finite temperature
Quantifying the rôle of∆p

[Kornyik & Vukics, Comp. Phys. Comm. 238:88–101 (2019)]

MCWF convergence – driven mode @ finite temperature
Quantifying the rôle of∆p

[Kornyik & Vukics, Comp. Phys. Comm. 238:88–101 (2019)]

Compile-time algorithms
C++: compiled language + Turing-complete toolset available @ compile time

Implementation: Boost.MPL

fundamental design principle of C++QED

all information available @ compile time should be processed@ compile time
using template metaprogramming

given system
⇕

program (script)
compilation−−−−−→

binary
code

execution−−−−−→
data

with several possible
system parameter sets

For given simulation modules are assembled by high-level C++ program (script)
– defines the physical system and what to do with it

Compile only once⇒ run several times

Layout of system known @ compile time⇒ implies lots of compile-time calculations

Compile-time algorithms
C++: compiled language + Turing-complete toolset available @ compile time

Implementation: Boost.MPL

fundamental design principle of C++QED

all information available @ compile time should be processed@ compile time
using template metaprogramming

given system
⇕

program (script)
compilation−−−−−→

binary
code

execution−−−−−→
data

with several possible
system parameter sets

For given simulation modules are assembled by high-level C++ program (script)
– defines the physical system and what to do with it

Compile only once⇒ run several times

Layout of system known @ compile time⇒ implies lots of compile-time calculations

Compile-time algorithms
C++: compiled language + Turing-complete toolset available @ compile time

Implementation: Boost.MPL

fundamental design principle of C++QED

all information available @ compile time should be processed@ compile time
using template metaprogramming

given system
⇕

program (script)
compilation−−−−−→

binary
code

execution−−−−−→
data

with several possible
system parameter sets

For given simulation modules are assembled by high-level C++ program (script)
– defines the physical system and what to do with it

Compile only once⇒ run several times

Layout of system known @ compile time⇒ implies lots of compile-time calculations

Compile-time algorithms
C++: compiled language + Turing-complete toolset available @ compile time

Implementation: Boost.MPL

fundamental design principle of C++QED

all information available @ compile time should be processed@ compile time
using template metaprogramming

given system
⇕

program (script)
compilation−−−−−→

binary
code

execution−−−−−→
data

with several possible
system parameter sets

For given simulation modules are assembled by high-level C++ program (script)
– defines the physical system and what to do with it

Compile only once⇒ run several times

Layout of system known @ compile time⇒ implies lots of compile-time calculations

Excursus: Template metaprogramming physical application
Dimensional analysis

Let’s teach C++ dimensions
▶ bring them into the type system⇔ “make them part of the grammar”

Compile time
Runtime

0000−221

value

mass

length time temperaturecurrent
intensity amount of substance

exponents

Newton’s law
▶ calculate:m ∗ a = F

01

m value

0 −20

a value

1 −21

F value

1

* =
small compile-time algorithm to calculate the resulting dimension

▶ try to do nonsense:m+ a

01

m value

0 −20

a value

1+
should cause compilation error

Large-scale structure

Example script
defining the physical system

System defined as graph of interactions
Particle in ring cavity with two lossy modes, one pumped

interactions mostly binary, but also ternary, quaternary

Building blocks for physical systems

Few are needed for a given problem domain, each having clear physical meaning

Example

polarizable particles in optical (cavity) fields

Frees Interactions

(Pumped/Lossy)Mode ParticleAlongCavity

(Pumped)Particle ParticleOrthogonalToCavity

ParticleTwoModes

(ternary, quaternary)

Building blocks for physical systems

Few are needed for a given problem domain, each having clear physical meaning

Example

polarizable particles in optical (cavity) fields

Frees Interactions

(Pumped/Lossy)Mode ParticleAlongCavity

(Pumped)Particle ParticleOrthogonalToCavity

ParticleTwoModes

(ternary, quaternary)

Example script

1-3 Define system part I: free elements

5 Specify initial condition

7-13 Specify & run time evolution

9-11 Define system part II:
interactions
layout of full system

Applications

∼ 20 research papers in 2008–2019

Polarizable particles in optical fields

▶ particle in the field of a cavity mode

▶ two particles, two-mode resonator

Ultracold atoms in optical fields

▶ optical lattices or BEC in double-well potential coupled to cavity mode

(Cavity) optomechanics

Complex atoms in electromagnetic fields (with motion)

▶ Hamiltonian and Liouvillean assembled @ compile time

Applications

∼ 20 research papers in 2008–2019

Polarizable particles in optical fields

▶ particle in the field of a cavity mode

▶ two particles, two-mode resonator

Ultracold atoms in optical fields

▶ optical lattices or BEC in double-well potential coupled to cavity mode

(Cavity) optomechanics

Complex atoms in electromagnetic fields (with motion)

▶ Hamiltonian and Liouvillean assembled @ compile time

Applications

∼ 20 research papers in 2008–2019

Polarizable particles in optical fields

▶ particle in the field of a cavity mode

▶ two particles, two-mode resonator

Ultracold atoms in optical fields

▶ optical lattices or BEC in double-well potential coupled to cavity mode

(Cavity) optomechanics

Complex atoms in electromagnetic fields (with motion)

▶ Hamiltonian and Liouvillean assembled @ compile time

Applications

∼ 20 research papers in 2008–2019

Polarizable particles in optical fields

▶ particle in the field of a cavity mode

▶ two particles, two-mode resonator

Ultracold atoms in optical fields

▶ optical lattices or BEC in double-well potential coupled to cavity mode

(Cavity) optomechanics

Complex atoms in electromagnetic fields (with motion)

▶ Hamiltonian and Liouvillean assembled @ compile time

Implementation

Rely heavily on open-source libraries: Blitz++, Boost, GSL, FLENS

Python interface
Contributed by Raimar Sandner

Present problem

Fundamental datastructure (Blitz++ library) outdated

Requirements for replacement

▶ multiarray interface

▶ sparse representation capabilities

▶ efficient operations + linear algebra
▶ C++11 features, eg.

▶ variadic indexing
▶ move semantics

Most promising candidate: QuantStack/Xtensor library

Present problem

Fundamental datastructure (Blitz++ library) outdated

Requirements for replacement

▶ multiarray interface

▶ sparse representation capabilities

▶ efficient operations + linear algebra
▶ C++11 features, eg.

▶ variadic indexing
▶ move semantics

Most promising candidate: QuantStack/Xtensor library

Present problem

Fundamental datastructure (Blitz++ library) outdated

Requirements for replacement

▶ multiarray interface

▶ sparse representation capabilities

▶ efficient operations + linear algebra
▶ C++11 features, eg.

▶ variadic indexing
▶ move semantics

Most promising candidate: QuantStack/Xtensor library

Thank you for your attention!

http://cppqed.sf.net

