$g \log(2) = \lambda_g \log(2) + \nu_2(2i\pi)$

Odderon a p=(q,d) modellben, a Tevatron D0 és a CERN LHC TOTEM kísérletei alapján

Szanyi István¹ és Csörgő Tamás^{2,3}

¹Eötvös Loránd Tudományegyetem ²MTA WIGNER Fizikai Kutatóközpont ³Eszterházy Károly Egyetem BerzeTÖK tábor 2019. július 1-5., Mátraszentimre

A négy alapvető kölcsönhatás

Gravitációs kölcsönhatás

a tárgyak esése

a bolygók keringése a Nap körül

Elektromágneses kölcsönhatás

a mágnesek taszítása és vonzása

Gyenge kölcsönhatás

atommagok fúziója

a Nap izzása

Erős kölcsönhatás

atommag

A kölcsönhatások közvetítő részecskéi

Az anyag felépítése és a részecskék méretei

SI prefixumok

Előtag	Jele	Szorzó		
		hatvánnyal	számnévvel	
yotta-	Y	10 ²⁴	kvadrillió	
zetta-	Z	10 ²¹	trilliárd	
exa-	Е	10 ¹⁸	trillió	
peta-	Р	10 ¹⁵	billiárd	
tera-	Т	10 ¹²	billió	
giga-	G	10 ⁹	milliárd	
mega-	М	10 ⁶	millió	
kilo-	k	10 ³	ezer	
hekto-	h	10 ²	száz	
deka-	da (dk)	10 ¹	tíz	
-	-	10 ⁰	egy	

Előtag	Jele	Szorzó		
		hatvánnyal	számnévvel	
-	-	10 ⁰	egy	
deci-	d	10 ⁻¹	tized	
centi-	С	10-2	század	
milli-	m	10 ⁻³	ezred	
mikro-	μ	10 ⁻⁶	milliomod	
nano-	n	10 ⁻⁹	milliárdod	
piko-	р	10 ⁻¹²	billiomod	
femto-	f	10 ⁻¹⁵	billiárdod	
atto-	а	10 ⁻¹⁸	trilliomod	
zepto-	z	10 ⁻²¹	trilliárdod	
yokto-	у	10 ⁻²⁴	kvadrilliomod	

A Nagy Hadronütköztető

Rugalmas mag-elektron szórás – R. Hofstadter, Nobel-díj (1961)

11

A részecskék szóródása

- Rugalmatlan szórás: ütközéskor a részecskék gerjesztett állapotba kerülnek vagy felbomlanak és új részecskék keletkeznek.
- Rugalmas szórás: ütközéskor csak impulzusátadás és irányváltozás a protonok nem bomlanak fel.

A rugalmas proton-proton szórás modellezése tömegközépponti rendszerben.

- Mandelstam változók:
 - átadott impulzus-négyzet:

$$t = -p^2 \theta^2$$

ütközési energia-négyzet:

$$s = 4E^2$$

A TOTEM által vizsgált folyamatok az LHC-ben

A proton-(anti)proton szórás mechanizmusa

Kölcsönhatás közvetítő részecskékkel: pomeronnal és odderonnal. A gluonikus cserék (P,O) teljesen dominálnak TeV-es energiákon.

Szanyi, Bence, Jenkovszky: J. Phys. G 46, 055002 (2019)

A kvarkos és a kvark nélküli többgluonos részecskék szemléltetése. 14

A pp és p \overline{p} szórás diffrenciális hatáskeresztmetszete

A különbség a pp és pp szórási folyamatok között a C=-1 részecskék cseréjének a hatása.

Inelasztikus keresztmetszet a BB p=(q,d) modellben

$$\tilde{\sigma}_{in}(b) = \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} d^2 \vec{s}_q d^2 \vec{s}_q d^2 \vec{s}_d d^2 \vec{s}_d d^2 \vec{s}_d D(\vec{s}_q, \vec{s}_d) D(\vec{s}_q, \vec{s}_d) \sigma(\vec{s}_q, \vec{s}_d; \vec{s}_q, \vec{s}_d; b)$$

A kvark-dikvark eloszlás a proton belsejében:

$$D(\vec{s}_q, \vec{s}_d) = \frac{1+\lambda^2}{R_{qd}^2 \pi} e^{-\frac{s_q^2 + s_d^2}{R_{qd}^2}} \delta^2(\vec{s}_q + \lambda \vec{s}_d) \left[\begin{array}{c} \lambda = \frac{m_q}{m_d} \end{array} \right] \left[\begin{array}{c} \vec{s}_d = -\lambda \vec{s}_q \\ \vec{s}_d' = -\lambda \vec{s}_q' \end{array} \right]$$

$$\vec{s}_d = -\lambda \vec{s}_q$$

Az alkotók kölcsönhatási valószínűsége:

$$\sigma(\vec{s}_{q}, \vec{s}_{d}; \vec{s}_{q}', \vec{s}_{d}'; b) = 1 - \prod_{a} \prod_{b} \left[1 - \sigma_{ab}(\vec{b} + \vec{s}_{a}' - \vec{s}_{b}) \right]$$

$$\sigma_{ab}(\vec{s}) = A_{ab}e^{-s^{2}/S_{ab}^{2}} \left[S_{ab}^{2} = R_{a}^{2} + R_{b}^{2} \right] \left[a, b \in \{q, d\} \right]$$

Az alkotók inelasztikus hatáskeresztmetszetei:

$$\sigma_{ab,in} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \sigma_{ab}(\vec{s}) d^2s$$

$$\sigma_{qq,in}:\sigma_{qd,in}:\sigma_{dd,in}=1:2:4$$

Szabad paraméterek:

Proton-(anti)proton a kvarkdikvark modellben.

$$R_q, R_d, R_{qd}, A_{qq}, \lambda$$
 $(A_{qq} = 1, \lambda = 0.5 - r \ddot{o} gz \acute{t} het \acute{o} ek)$ 16

Kibővített Bialas-Bzdak modell (reBB)

• A rugalmas szórási amplitúdó az ütközési parméter térben:

$$t_{el}(s,b) = i \left[1 - e^{-\Omega(s,b)} \right]$$

- arXiv:1505.01415
- <u>F. Nemes, T. Csörgő, M. Csanád, Int. J.</u> <u>Mod. Phys. A Vol. 30 (2015) 1550076</u>

Az opacitásfüggvény komplex:

$$Re\Omega(s,b) = -\frac{1}{2}ln[1 - \tilde{\sigma}_{in}(s,b)]$$

$$Im\Omega(s,b) = -\alpha \ \tilde{\sigma}_{in}(s,b)$$

$$\uparrow$$
új szabad paraméter

A rugalmas szórási amplitúdó az impulzus térben:

$$T(s,t) = 2\pi \int_0^\infty t_{el}(s,b) J_0(\Delta b) b \, db$$

 $\sqrt{s}
ightarrow\infty$, $\Delta\cong\sqrt{-t}$

Mérhető fizikai mennyiségek

A differenciális hatáskeresztmetszet:

$$\frac{d\sigma}{dt}(s,t) = \frac{1}{4\pi} |T(s,t)|^2$$

• A teljes, rugalmas és rugalmatlan szórási hatáskeresztmetszetek:

$$\sigma_{tot}(s) = 2ImT(s, t = 0)$$

$$\sigma_{\rm el}(s) = \int_{-\infty}^{0} \frac{d\sigma(s,t)}{dt} dt$$

$$\sigma_{in}(s) = \sigma_{tot}(s) - \sigma_{el}(s)$$

A ρ-paraméter:

$$\rho(s) = \frac{\text{Re}T(s, t = 0)}{\text{Im}T(s, t = 0)}$$

Korábbi eredmények

Illesztési módszer

• A legkisebb négyzetek módszere a következő khí-négyzettel:

$$\chi^{2} = \sum_{j=1}^{M} \sum_{i=1}^{n_{j}} \frac{(d_{i} - N_{j}th_{i})^{2}}{e_{i}^{2} + s_{i}^{2}} + \sum_{j=1}^{M} \frac{(N_{j} - 1)^{2}}{\delta N_{j}^{2}} + \frac{(\sigma_{tot} - \sqrt{N_{1}}\sigma_{tot,th})^{2}}{\delta^{2}\sigma_{tot}}$$

- Ez figyelembe veszi:
 - a mért differenciális hatáskeresztmetszet adatok t-függő statisztikus és szisztematikus hibáit;
 - a normalizációból eredő bizonytalanságot $\rightarrow N_i$ paramtéterek;
 - a teljes hatáskeresztmetszet kísérleti értékét annak teljes hibájával.
- Minimalizáció a CERN Root MINUIT programmal.
- A paraméterek hibáinak becslése a MINOS algoritmussal.

Új ReBB illesztések a $p\overline{p} d\sigma/dt$ adatokra

21

√s=1.96 TeV, pp

reBB p=(q,d) fit

data

2.0

-t [GeV²]

Új ReBB illesztések a TOTEM pp dσ/dt adatokra

A reBB modell illesztett paraméterei

 $A_{qq} = 1 (r \ddot{o} gz \acute{i} tett), \qquad \lambda = 0.5 (r \ddot{o} gz \acute{i} tett)$

\sqrt{s} [TeV]	0.546 (<i>pp</i>)	1.96 (pp̄)	2.76 (<i>pp</i>)	7 (<i>pp</i>)	8 (<i>pp</i>)		
t [GeV ²]	(0.033, 1.530)	(0.260, 1.200)	(0.072, 0.740)	(0.005, 2.443)	(0.029, 0.195)		
χ^2/NDF	139.51/116	13.91/13	56.75/59	174.41/161	2.25/28		
CL [%]	6.77	38.03	55.88	22.23	100		
$R_q [fm]$	0.356 ± 0.001	0.402 ± 0.003	0.409 ± 0.001	0.452 ± 0.001	0.456 ± 0.005		
R_d [fm]	0.835 ± 0.002	0.874 ± 0.012	0.881 ± 0.004	0.946 ± 0.002	0.925 ± 0.007		
$R_{qd} [fm]$	0.267 (rögzített)						
α	0.120 ± 0.002	0.162 ± 0.007	0.130 ± 0.005	0.124 ± 0.001	0.124 (fixed)		
N_1	0.950 ± 0.005	0.976 ± 0.076	1.061 ± 0.016	0.991 ± 0.006	1.012 ± 0.041		
N ₂	1.001 ± 0.014	—	1.099 ± 0.032	1.113 ± 0.022	—		
N3	1.048 ± 0.024	—	—	—	—		

A ReBB modell illesztett paramétereinek értékei a proton-proton és proton-antiproton szórásra. A paraméterértékek és a hibáik két értékes számjegyig vannak felkerekítve.

A paraméterek energiafüggése

Extrapolációk: bizonyíték az Odderon kicserélődésére

Ster, Jenkovszky, Csörgő: Phys. Rev. D 91, 074018 (2015) – korábbi hasonló tanulmány

Modell független Lévy sorfejtés

T. Csörgő, R. Pasechnik, A. Ster, <u>arxiv:1807.02897</u>

Odderon effektusok

Protonszerkezet

b, fm

3.0

13 TeV

7 TeV

53 GeV

30 GeV

23 GeV

-- 45 GeV

2.5

2.0

----- 62 GeV

Alszerkezetek a protonban

nagyobb (dikvark) és egy kisebb (kvark) szerkezet is!!

A proton kvark-dikvark szerkezete

"Matrjoska effektus"

"Üreg effektus"

I. Dremin, <u>arXiv:1610.07937</u> also in <u>Universe 4 (2018) no.5, 65</u> W. Broniowski et al, <u>arXiv:1806.04756</u> V. A. Petrov and A. Samokhin, <u>arXiv:1801.038</u> Odderon kicserélődése az ütköző protonok és antiprotonok között.

A protonon belül két kisebb szerkezet van: egy kvak q és egy dikvark d.

A proton nagyobbá és sötétebbé (abszorptívabbá) váik a növekvő energiával, de ugyanakkor 13 TeV energián megjelenik az "üreg-effektus".

Köszönöm a figyelmet !

Az Emberi Erőforrások Minisztériuma ÚNKP-18-2 kódszámú Új Nemzeti Kiválóság Programjának, az NKFIH FK-123842 és FK-123959 kódszámú kutatóprogramok támogatásával készült