Raman spectroscopy of laser-matter interactions

May 18, 2022, 11:00 AM


Dr Miklós Veres (Wigner RCP)


Raman spectroscopy is widely used to characterize different materials through characteristic vibrations of their constituents. It is highly sensitive to changes in bonding configuration, crystalline structure, isotope content, or even internal stress. We report on Raman spectroscopic studies of structural transformations in urethane dimethacrylate/triethylene glycol dimethacrylate copolymer nanocomposite doped with gold nanorods upon irradiation with a high-energy femtosecond laser pulse. The plasmon resonance of the nanorods has been tuned to the 800 nm wavelength of the laser, and the plasmonic enhancement of the electromagnetic field in their vicinity resulted in surplus crosslinking and other alterations in the polymeric structure.

Presentation materials