Speaker
Description
The recent development of quantum technology may allow us to use quantum computers to efficiently simulate quantum dynamics in the near future. In this talk, I will discuss how quantum simulation may help us to deepen our understanding of some transport phenomena inside plasma by showing two examples. The first example is the 1+1D U(1) gauge theory, also known as the Schwinger model, evolving inside a hot plasma made up of scalar fields. I will show both the string breaking and reconnection processes, the latter of which is similar to quarkonium regeneration inside the quark-gluon plasma (QGP), an important idea brought up by Thews, Schroedter and Rafelski to explain J/psi production enhancement. The second example is jet quenching in the QGP. I will show how to use light-front QCD Hamiltonian and quantum simulation to study the Landau-Pomeranchuk-Migdal effect for processes with three or more splittings, which are beyond the scope of the current methods.