Speaker
Description
This study explores how gold nanoparticle doping enhances medium absorption under laser infrared pulses of intensities ~10^15 - 10^18 W/cm2. Traditionally, not the particle-in-cell method comes first in mind, however, we can also investigate effects which cannot be considered with common methods. Using numerical modeling and the EPOCH software, we investigate how nanoparticles of various shapes act as resonant nanoantennas. We analyze the absorption characteristics of the medium and calculate ionization product energies for protons, electrons, and ions. Comparative analysis identifies optimal conditions for energy absorption and ion enhancement with nanoparticles of different shapes and sizes, including quadrupole, dipole, and spherical forms.
Additionally, we examine ionization dynamics with quadrupole nanoantennas and address energy absorption saturation.