Speaker
Edoardo Vescovi
(Nordita)
Description
We consider scalar local operators of the determinant type in the conformal fishnet theory that arises as a limit of gamma-deformed $\mathcal{N}=4$ super Yang-Mills theory. We generalise a field-theory approach to expand their correlation functions to arbitrary order in the small coupling constants and apply it to the bi-scalar reduction of the model. We explicitly analyse the two-point functions of determinants, as well as of certain deformations with the insertion of scalar fields, and describe the Feynman-graph structure of three- and four-point correlators with single-trace operators. These display the topology of globe and spiral graphs, which are known to renormalise single-trace operators, but with "alternating" boundary conditions.