20–21 Jun 2022
Hotel Mercure Budapest Castle Hill
Europe/Budapest timezone

Full Core Pin-Level VVER-440 Simulation of a Rod Drop Experiment with the GPU-Based Monte Carlo Code~GUARDYAN

21 Jun 2022, 15:10
30m
Hotel Mercure Budapest Castle Hill

Hotel Mercure Budapest Castle Hill

1013 Budapest, Krisztina Körút 41-43
Lecture Session VII

Speaker

David Legrady (Dr.)

Description

Targeting ultimate fidelity reactor physics calculations the Dynamic Monte Carlo (DMC) method simulates reactor transients without resorting to static or quasistatic approximations. Due to the capability to harness the computing power of Graphics Processing Units, the GUARDYAN (GpU Assisted Reactor DYnamic ANalysis) code has been recently upscaled to perform pin-by-pin simulations of power plant scale systems as demonstrated in this contribution. A recent rod drop experiment at a VVER-440/213 (vodo-vodyanoi enyergeticheskiy reaktor) type power plant at Paks NPP, Hungary, was considered and signals of ex-core detectors placed at three different positions were simulated successfully by GUARDYAN taking realistic fuel loading, including burn-up data into account. Results were also compared to the time-dependent Paks NPP in-house nodal diffusion code VERETINA (VERONA: VVER Online Analysis and RETINA: Reactor Thermo-hydraulics Interactive). Analysis is given of the temporal and spatial variance distribution of GUARDYAN fuel pin node-wise power estimates. We can conclude that full core, pin-wise DMC power plant simulations using realistic isotope concentrations are feasible in reasonable computing times down to 1--2\% error of ex-core detector signals using current NVIDIA A100 GPU High Performance Computing architectures, thereby demonstrating a technological breakthrough.

Primary authors

David Legrady (Dr.) Mr Gabor Tolnai (BME NTI) Mr Elod Pazman (Wigner Research Centre for Physics)

Presentation materials