While the compilation of quantum algorithms is an inevitable step towards executing programs on quantum processors, the decomposition of the programs into elementary quantum operations poses serious challenge, mostly because in the NISQ era it is advantageous to compress the executed programs as much as possible.

In our recent work [1] we proposed the utilization of FPGA based data-flow...

We present an improved efficiency Leading Zero Counter for Xilinx FPGAs which improves the path delay while maintaining the resource usage, along with generalizing the scheme to variants whose inputs are of any size. We also show how the Ultrascale architecture also allows for better Intellectual Property solutions of certain forms of this circuit with its newly introduced logic elements. We...

Quadratic unconstrained binary optimization (QUBO) problems, including MAX-CUT as a special case, are important hard problems of mathematical optimization. Recently they have attracted much attention because they are the very problems that quantum annealers can address directly: QUBO problems are equivalent to the Ising model, a central and extensively studied problems in physics.

Even...

Closed quantum systems are described by a deterministic, linear evolution of their quantum states. Observation of a system breaks this rule: we gain information and the description becomes probabilistic. Provided we have multiple copies of a system in the same quantum state, we can design a protocol consisting of a joint unitary operation on all of them and a subsequent measurement on all but...